Novel cellulose acetate-based anion exchange membranes (CA-AEM) are successfully synthesized via gamma radiation grafting as a possible renewable alternative to commercial AEMs. Using CA film precursors with degree of acetylation of 2.5, the synthesized AEM shows a high ion exchange capacity of 2.15 mmol g −1 obtained at high degree of grafting of 45%. It was determined using thermogravimetric analysis that the radiation-grafted CA-AEM has stable amine functional groups under oxygen environment within the normal operating temperature range of alkaline fuel cells. The CA-AEM also exhibits appreciable performance over a range of temperatures, with a highest ionic conductivity of up to 0.163 S cm −1 depending on the synthesis parameters. Results revealed that membranes prepared using gamma radiation dose of 31 kGy and above are susceptible to mechanical and dimensional instability due to increased water uptake and degree of swelling. Further study should consider the balance between grafting parameters and the desired hydrophysical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.