[1] Large sets of filtered actinometer, filtered pyrheliometer and Sun photometer measurements have been carried out over the past 30 years by various groups at different Arctic and Antarctic sites and for different time periods. They were examined to estimate ensemble average, long-term trends of the summer background aerosol optical depth AOD(500 nm) in the polar regions (omitting the data influenced by Arctic haze and volcanic eruptions). The trend for the Arctic was estimated to be between À1.6% and À2.0% per year over 30 years, depending on location. No significant trend was observed for Antarctica. The time patterns of AOD(500 nm) and Å ngström's parameters a and b measured with Sun photometers during the last 20 years at various Arctic and Antarctic sites are also presented. They give a measure of the large variations of these parameters due to El Chichon, Pinatubo, and Cerro Hudson volcanic particles, Arctic haze episodes most frequent in winter and spring, and the transport of Asian dust and boreal smokes to the Arctic region. Evidence is also shown of marked differences between the aerosol optical parameters measured at coastal and high-altitude sites in Antarctica. In situ optical and chemical composition parameters of aerosol particles measured at Arctic and Antarctic sites are also examined to achieve more complete information on the multimodal size distribution shape parameters and their radiative properties. A characterization of aerosol radiative parameters is also defined by plotting the daily mean values of a as a function of AOD(500 nm), separately for the two polar regions, allowing the identification of different clusters related to fifteen aerosol classes, for which the spectral values of complex refractive index and single scattering albedo were evaluated. Citation: Tomasi, C., et al. (2007), Aerosols in polar regions: A historical overview based on optical depth and in situ observations,
Abstract. Small changes in the radiation budget at the earth's surface can lead to large climatological responses when persistent over time. With the increasing debate on anthropogenic influences on climatic processes during the 1980s the need for accurate radiometric measurements with higher temporal resolution was identified, and it was determined that the existing measurement networks did not have the resolution or accuracy required to meet this need. In 1988 the WMO therefore proposed the establishment of a new international Baseline Surface Radiation Network (BSRN), which should collect and centrally archive high-quality ground-based radiation measurements in 1 min resolution. BSRN began its work in 1992 with 9 stations; currently (status 2018-01-01), the network comprises 59 stations (delivering data to the archive) and 9 candidates (stations recently accepted into the network with data forthcoming to the archive) distributed over all continents and oceanic environments. The BSRN database is the World Radiation Monitoring Center (WRMC). It is hosted at the Alfred Wegener Institute (AWI) in Bremerhaven, Germany, and now offers more than 10 300 months of data from the years 1992 to 2017. All data are available at https://doi.org/10.1594/PANGAEA.880000 free of charge.
Precise calculations of the total Rayleigh-scattering optical depth have been performed at 88 wavelengths ranging from 0.20 to 4.00 microm for the six well-known standard atmosphere models by integrating the volume Rayleigh-scattering coefficient along the vertical atmospheric path from sea level to a 120-km height. The coefficient was determined by use of an improved algorithm based on the Ciddor algorithm [Appl. Opt. 35, 1566 (1996)], extended by us over the 0.20-0.23-microm wavelength range to evaluate the moist air refractive index as a function of wavelength, air pressure, temperature, water-vapor partial pressure, and CO2 volume concentration. The King depolarization factor was also defined taking into account the moisture conditions of air. The results indicate that the influence of water vapor on Rayleigh scattering cannot be neglected at tropospheric altitudes: for standard atmospheric conditions represented in terms of the U.S. Standard Atmosphere (1976) model, the relative variations produced by water vapor in the Rayleigh scattering parameters at a 0.50-microm wavelength turn out to be equal to -0.10% in the moist air refractivity at sea level (where the water-vapor partial pressure is equal to approximately 7.8 hPa), -0.04% in the sea-level King factor, -0.24% in the sea-level Rayleigh-scattering cross section, and -0.06% in the Rayleigh-scattering optical depth.
Multi-year sets of ground-based sun-photometer measurements conducted at 12 Arctic sites and 9 Antarctic sites were examined to determine daily mean values of aerosol optical thickness () at visible and near-infrared wavelengths, from which best-fit values of Ångström"s exponent were calculated. Analysing these data, the monthly mean values of (0.50 µm) and and the relative frequency histograms of the daily mean values of both parameters were determined for winterspring and summer-autumn in the Arctic and for austral summer in Antarctica. The Arctic and Antarctic covariance plots of the seasonal median values of versus (0.50 µm) showed: (i) a considerable increase in (0.50 µm) for the Arctic aerosol from summer to winter-spring, without marked changes in ; and (ii) a marked increase in (0.50 µm) passing from the Antarctic Plateau to coastal sites, whereas decreased considerably due to the larger fraction of sea-salt aerosol. Good agreement was found when comparing ground-based sun-photometer measurements of () and at Arctic and Antarctic coastal sites with Microtops measurements conducted during numerous AERONET/MAN cruises from 2006 to 2013 in three Arctic Ocean sectors and in coastal and offshore regions of the Southern Atlantic, Pacific, and Indian Oceans, and the Antarctic Peninsula. Lidar measurements were also examined to characterise vertical profiles of the aerosol backscattering coefficient measured throughout the year at Ny-Ålesund. Satellite-based MODIS, MISR, and AATSR retrievals of () over large parts of the oceanic polar regions during spring and summer were in close agreement with ship-borne and coastal ground-based sun-photometer measurements. An overview of the chemical composition of fine and accumulation/coarse mode particles is also presented, based on in-situ measurements at Arctic and Antarctic sites. Fourteen log-normal aerosol number size-distributions were defined to represent the average features of fine and accumulation/coarse mode particles for Arctic haze, summer background aerosol, Asian dust and boreal forest fire smoke, and for various background austral summer aerosol types at coastal 4 and high-altitude Antarctic sites. The main columnar aerosol optical characteristics were determined for all particle modes, based on in-situ measurements of the scattering and absorption coefficients. Diurnally averaged direct aerosol-induced radiative forcing and efficiency were calculated for a set of multimodal aerosol extinction models, using various Bidirectional Reflectance Distribution Function models over vegetation-covered, oceanic and snow-covered surfaces. These gave a reliable measure of the pronounced effects of aerosols on the radiation balance of the surface-atmosphere system over polar regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.