To evaluate the phytoremediation capability of some poplar and willow clones a hydroponic screening for cadmium tolerance, accumulation and translocation was performed. Rooted cuttings were exposed for 3 weeks to 50 μM cadmium sulphate in a growth chamber and morpho-physiological parameters and cadmium content distribution in various parts of the plant were evaluated. Total leaf area and root characteristics in clones and species were affected by cadmium treatment in different ways. Poplar clones showed a remarkable variability whereas willow clones were observed to be more homogeneous in cadmium accumulation and distribution. This behaviour was further confirmed by the calculation of the bio-concentration factor (BCF) and the translocation factor (Tf). Mean values of all the clones of the two Salicaceae species showed that willows had a far greater ability to tolerate cadmium than poplars, as indicated by the tolerance index (Ti), calculated on the dry weight of roots and shoots of plants. As far as the mean values of Tf was concerned, the capacity of willows to translocate was double that of poplars. On the contrary, the mean values of total BCF in poplar clones was far higher with respect to those in willows. The implications of these results in the selection of Salicaceae clones for phytoremediation purposes were discussed.
We investigated how the presence of cadmium (Cd) at the emergence of Phragmites australis Trin. (Cav.) ex Steudel plants from rhizomes interacted with leaf and chloroplast physiological and biochemical processes. About 8.5 nmol Cd mg Ϫ1 chlorophyll was found in leaves, and 0.83 nmol Cd mg Ϫ1 chlorophyll was found in chloroplasts of plants treated with 50 m Cd. As a result, a 30% loss of chlorophyll was measured concomitantly with a comparable percentage reduction in light-saturated photosynthesis. Rubisco content and activity were lowered by 10% and 60%, respectively. Antioxidant activity was stimulated by Cd treatment and was associated with an increase in the glutathione and pyridine pools, and with a larger pool of reduced glutathione. It is suggested that the glutathione pool and its predominance in the reduced state protected the activity of many key photosynthetic enzymes against the thiophilic binding of Cd. Chloroplast ultrastructure was not significantly altered with 50 m treatment and the efficiency of photosystem II, measured as the fluorescence ratio F v /F m , remained high because F 0 and F m were proportionally decreased. In plants treated with 100 m Cd, all effects were exacerbated, but F v /F m remained close to that of control leaves and the glutathione and pyridine nucleotides pools were lowered. The results suggest that glutathione exerted a direct important protective role on photosynthesis in the presence of Cd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.