SUMMARY Anuran amphibians have multiple populations of pH/CO2-sensitive respiratory-related chemoreceptors. This study examined in cane toads(Bufo marinus) whether chronic hypercapnia (CHC) altered the pH/CO2 sensitivity of central respiratory-related chemoreceptors in vitro and whether CHC altered the acute hypercapnic ventilatory response (HCVR; 5% CO2) in vivo. Toads were exposed to CHC(3.5% CO2) for 9 days. In vitro brainstem–spinal cord preparations were used to examine central respiratory-related pH/CO2 chemosensitivity. CHC augmented in vitro fictive breathing as the pH of the superfusate was lowered from 8.2 to 7.4. Midbrain transection in vitro (at a level known to reduce the clustering of breaths) did not alter this augmentation. In vivo, CHC did not alter the acute HCVR but midbrain transection changed the breathing pattern and increased the overall level of ventilation. CHC did not alter the effect of olfactory CO2 chemoreceptor denervation on the acute HCVR in vivo but did alter the response when returned to normal air. The results indicate that CHC increases the response of central pH/CO2chemoreceptors to changes in cerebrospinal fluid pH in vitro yet this increase is not manifest as an increase in the HCVR in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.