Endothelial cells line the inner portion of the heart, blood vessels, and lymphatic vessels; a basal membrane of extracellular matrix lines the extraluminal side of endothelial cells. The apical side of endothelial cells is the site for the glycocalyx, which is a complex network of macromolecules, including cell-bound proteoglycans and sialoproteins. Sepsis-associated alterations of this structure may compromise endothelial permeability with associated interstitial fluid shift and generalized edema. Indeed, in sepsis, the glycocalyx acts as a target for inflammatory mediators and leukocytes, and its ubiquitous nature explains the damage of tissues that occurs distant from the original site of infection. Inflammatory-mediated injury to glycocalyx can be responsible for a number of specific clinical effects of sepsis, including acute kidney injury, respiratory failure, and hepatic dysfunction. Moreover, some markers of glycocalyx degradation, such as circulating levels of syndecan or selectins, may be used as markers of endothelial dysfunction and sepsis severity. Although a great deal of experimental evidence shows that alteration of glycocalyx is widely involved in endothelial damage caused by sepsis, therapeutic strategies aiming at preserving its integrity did not significantly improve the outcome of these patients.
Both the hyperproduction of oxygen free radicals (OFR) and the weakening of natural scavenging mechanisms have been implicated as contributors to multiple organ failure in septic shock. This study examined whether the antioxidants glutathione (GSH) and N-acetyl-L-cysteine (NAC) play a protective role against damage by OFR in early septic shock. We randomly entered 30 patients with septic shock into one of three groups within 24 h of diagnosis. All of the patients received septic shock therapy, including parenteral nutrition, antibiotics, and volume-expanding and inotropic agents. One group (Group B) also received 70 mg/kg/d of intravenous GSH, and a second group (Group C), 70 mg/kg/d of intravenous GSH and 75 mg/kg/d of intravenous NAC. The protection against OFR damage was evaluated by measuring expired ethane, plasma malondialdehyde, erythrocyte deformability, complement activation, and clinical scores at admission and on Days 3 and 5 of treatment. A significant decrease in peroxidative indexes was observed at Day 5 in Group B as compared with both the control group and basal values. The decrease in peroxidative indexes was even more marked in Group C. Clinical scores in this group were also significantly improved. In conclusion, the administration of high doses of NAC added to GSH significantly decreased the peroxidative stress of patients with septic shock.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.