Since the beginning of coronavirus disease 2019 (COVID-19) pandemic, large attention has been focused on the relationship between SARS-CoV-2 diffusion and environment. As a matter of fact, clear evidence of the transmission of SARS-CoV-2 via respiratory aerosol would be of primary importance; at the same time, checking the presence of SARS-CoV-2 in wastewater can be extremely useful to control the diffusion of the disease. Up to now, many studies report SARS-CoV-2 concentrations in indoor/outdoor air samples or water/wastewater samples that can differ by order of magnitude. Unfortunately, complete information about the scientific approach of many studies is still missing, relating to: samplers and sampling materials performances, recovery tests, measurement uncertainty, robustness, detection and quantification limits, infectivity of captured virus, virus degradation during sampling, influence of sample pre-treatments (included freezing) on results, effects of inhibitors, sample alterations due to manipulation, validation of methods and processes, quality assurance according to ISO/IEC 17025 requirements. Based on the first experiences focused on the presence of SARS-CoV-2 in environmental samples such as air quality filters or impingers collection solutions, the present study describes a coherent preliminary approach to SARS-CoV-2 indoor and outdoor air sampling in order to overcome the evident lack of standardization. Three aspects are highlighted here: the first solution to assure quality and consistency to air sampling relies on the development of recovery tests using standard materials and investigating sampling materials, sampling techniques, sampling durations, sample conservation and pre-treatments; secondly, in order to overcome the shortcomings of every single sampling technique, coupling different samplers in parallel sampling could be an efficient strategy to collect more information and make data more reliable; finally, with regards to airborne virus sampling, the results could be confirmed by simplified emission and dilution models.
The airborne transmission of SARS-CoV-2 remains surprisingly controversial; indeed, health and regulatory authorities still require direct proof of this mode of transmission. To close this gap, we measured the viral load of SARS-CoV-2 of an infected subject in a hospital room (through an oral and nasopharyngeal swab), as well as the airborne SARS-CoV-2 concentration in the room resulting from the person breathing and speaking. Moreover, we simulated the same scenarios to estimate the concentration of RNA copies in the air through a novel theoretical approach and conducted a comparative analysis between experimental and theoretical results. Results showed that for an infected subject's viral load ranging between 2.4 × 10 6 and 5.5 × 10 6 RNA copies mL -1 , the corresponding airborne SARS-CoV-2 concentration was below the minimum detection threshold when the person was breathing, and 16.1 (expanded uncertainty of 32.8) RNA copies m -3 when speaking. The application of the predictive approach provided concentrations metrologically compatible with the available experimental data (i.e. for speaking activity). Thus, the study presented significant evidence to close the gap in understanding airborne transmission, given that the airborne SARS-CoV-2 concentration was shown to be directly related to the SARS-CoV-2 emitted. Moreover, the theoretical analysis was shown to be able to quantitatively link the airborne concentration to the emission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.