In this paper we report on the design, modeling, experimental testing and scaling analysis of a novel MAgnetic Variable stiffnEess spRIng-Clutch (MAVERIC) device, which may be used as the elastic element of Variable Stiffness Actuators (VSAs). The device, comprising two co-axial diametrically magnetized hollow cylinders, has two degrees of freedom: a rotation of the two cylinders around the common axis and a relative translation along the same axis. For small rotations, the torque arising from the magnetic interaction of the two cylinders is almost linearly proportional to their relative rotation, as in mechanical torsion springs. In addition, the stiffness of the equivalent spring can be varied continuously from a maximum value down to exactly zero by changing the axial overlap of the two cylinders. In this way the proposed device can be used both as a clutch (i.e., perfectly compliant element) and as a variable stiffness torsion spring. A prototype, designed after magnetostatic FEM simulations, has been built and experimentally characterized. The developed MAVERIC has an experimentally determined maximum transmissible torque of 109.81 mN m, while the calculated maximum stiffness is 110.2 mN m rad −1 . The amplitude of the torque-angle characteristic can be tuned linearly with a sensitivity of 12.63 mN m mm −1 rad −1 . Further simulations have been computed parameterizing the geometry and the number of pole pairs of the magnets.The maximum torque density reached for one pole pair is 47.21 · 10 3 N m m −3 , whereas for a fixed geometry similar to that of the developed prototype, the maximum torque is reached for seven pole pairs. Overall, compared to mechanical springs, MAVERIC has no fatigue or overloading issues. Compared to other magnetic couplers, torsion stiffness can be varied continuously from a maximum value down to exactly zero, when the device acts as a disengaged clutch, disconnecting the load from the actuator.
Fully implantable Cochlear Implants (CIs) would represent a tremendous advancement in terms of quality of life, comfort and cosmetics, for patients with profound sensorineural deafness. One of the main challenges involved in the development of such implants consists of finding a power supply means which does not require recharging. To this aim an inertial Energy Harvester (EH), exploiting the kinetic energy produced by vertical movements of the head during walking, has been investigated. Compared to existing devices, the EH needs to exploit very low frequency vibrations (<2.5 Hz) with small amplitude (<9 m/s(2)). In order to maximize the power transduced, an optimization method has been developed, which is the objective of this paper. The method consists in calculating the dynamical behavior of the EH using discrete transforms of experimentally measured acceleration profiles. It is shown that the quick integration of the second order dynamical equation allows the use of computationally intensive optimization techniques, such as Genetic Algorithms (GAs). The robustness of the solution is also evaluated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.