We present a simple, general, and accurate construction of the event horizons for the fusion of two neutral, rotating black holes with arbitrary orientation and values of their spins, in the extreme mass ratio limit where one black hole is much larger than the other. We compute several parameters that characterize the fusion and investigate their dependence on the black hole spin and orientation axis. We also exhibit and study the appearance of transient toroidal topology of the horizon. An earlier conjecture about universal critical exponents before and after an axisymmetric pinch is proven.
We propose an underground experiment to detect the general relativistic effects due to the curvature of space-time around the Earth (de Sitter effect) and to the rotation of the planet (dragging of the inertial frames or Lense-Thirring effect). It is based on the comparison between the IERS value of the Earth rotation vector and corresponding measurements obtained by a triaxial laser detector of rotation. The proposed detector consists of six large ring lasers arranged along three orthogonal axes. In about two years of data taking, the 1% sensitivity required for the measurement of the Lense-Thirring drag can be reached with square rings of 6 m side, assuming a shot noise limited sensitivity (20 prad/s/root Hz). The multigyros system, composed of rings whose planes are perpendicular to one or the other of three orthogonal axes, can be built in several ways. Here, we consider cubic and octahedral structures. It is shown that the symmetries of the proposed configurations provide mathematical relations that can be used to ensure the long term stability of the apparatus
Alternative theories of gravity have been recently studied in connection with their cosmological applications, both in the Palatini and in the metric formalism. The aim of this paper is to propose a theoretical framework (in the Palatini formalism) to test these theories at the solar system level and possibly at the galactic scales. We exactly solve field equations in vacuum and find the corresponding corrections to the standard general relativistic gravitational field. On the other hand, approximate solutions are found in matter cases starting from a Lagrangian which depends on a phenomenological parameter. Both in the vacuum case and in the matter case the deviations from General Relativity are controlled by parameters that provide the Post-Newtonian corrections which prove to be in good agreement with solar system experiments. * Electronic address: allemandi@dm.unito.it † Electronic address: francaviglia@dm.unito.it ‡ Electronic address: matteo.ruggiero@polito.it § Electronic address: angelo.tartaglia@polito.it
The essence of the gravitomagnetic clock effect is properly defined showing that its origin is in the topology of world lines with closed space projections. It is shown that, in weak field approximation and for a spherically symmetric central body, the loss of synchrony between two clocks counter-rotating along a circular geodesic is proportional to the angular momentum of the source of the gravitational field. Numerical estimates are presented for objects within the solar system. The less unfavorable situation is found around Jupiter.
The difference in travel time of corotating and counter-rotating light waves in the field of a central massive and spinning body is studied. The corrections to the special relativistic formula are worked out in a Kerr field. Estimation of numeric values for the Earth and satellites in orbit around it show that a direct measurement is in the order of concrete possibilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.