The structure sensitivity of enantioselective hydrogenations on chirally modified metals was investigated using Pt nanoparticles of different shapes. All three samples had an average particle size of 10 nm, but the fraction of dominantly cubic, cubooctahedral, and octahedral particles varied with decreasing {100} and increasing {111} faces in the same order. In the absence of chiral modifier the hydrogenation of ethyl pyruvate was independent of the shape of the Pt nanoparticles; variation of the specific reaction rates did not exceed the experimental error on all self-prepared catalysts and on a commercial Pt/Al(2)O(3) used as reference. Addition of cinchonidine or quinine induced a significant rate enhancement by a factor of 4-15, and the rate was always higher with quinine. Also, 72-92% ees were achieved, and the reaction was shape selective: both the rate and the ee increased with increasing Pt{111}/Pt{100} ratio. A similar correlation in the hydrogenation of ketopantolactone confirmed that decarbonylation or aldol-type side reactions of ethyl pyruvate were not the reason for structure sensitivity. A combined catalytic and theoretical study revealed that the probable origin of the particle shape dependency of enantioselective hydrogenation is the adsorption behavior of the cinchona alkaloid. DFT studies of cinchonidine interacting with Pt(100) and Pt(111) terraces indicated a remarkably stronger interaction on the former crystallographic face by ca. 155 kJ/mol. The higher adsorption strength on Pt(100) was corroborated experimentally by the faster hydrogenation of the homoaromatic ring of the alkaloid, which fragment interacts the strongest with Pt during its adsorption. Thus, an ideal catalyst for the hydrogenation of activated ketones contains dominantly Pt{111} terraces, which crystallographic face is more active and affords higher enantioselectivity, combined with the higher stability of the modifier.
O-Phenylcinchonidine (PhOCD) is known to efficiently induce inversion of enantioselectivity with respect to cinchonidine (CD) in the enantioselective hydrogenation of various activated ketones on Pt/Al(2)O(3). To understand the origin of the switch of enantioselective properties of the catalyst, the adsorption of PhOCD has been studied by in situ ATR-IR spectroscopy, in the presence of organic solvent and dissolved hydrogen, i.e., under conditions used for catalytic hydrogenation. The adsorption structures and energies of the anchoring group of CD and PhOCD were calculated on a Pt 38 cluster, using relativistically corrected density functional theory (DFT). Both approaches indicate that both modifiers are adsorbed via the quinoline ring and that the spatial arrangement of the quinuclidine skeleton is critical for the chiral recognition. New molecular level information on the conformation of CD relative to PhOCD adsorbed on a surface is extracted from the ATR spectra and supported by DFT calculations. The result is a clearer picture of the role played by the phenyl group in defining the chiral space created by the modifiers on Pt. Moreover, when CD was added to a pre-equilibrated adsorbed layer of PhOCD, a chiral adsorbed layer was formed with CD as the dominant modifier, indicating that CD adsorbs more strongly than PhOCD. Conversely, when PhOCD was added to preadsorbed CD, no significant substitution occurred. The process leading to nonlinear effects in heterogeneous asymmetric catalysis has been characterized by in situ spectroscopy, and new insight into a heterogeneous catalytic R-S switch system is provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.