In this work we propose efficient codec algorithms for watermarking images that are intended for uploading on the web under intellectual property protection. Headed to this direction, we recently suggested a way in which an integer number w which being transformed into a self-inverting permutation, can be represented in a two dimensional (2D) object and thus, since images are 2D structures, we have proposed a watermarking algorithm that embeds marks on them using the 2D representation of w in the spatial domain. Based on the idea behind this technique, we now expand the usage of this concept by marking the image in the frequency domain. In particular, we propose a watermarking technique that also uses the 2D representation of self-inverting permutations and utilizes marking at specific areas thanks to partial modifications of the image’s Discrete Fourier Transform (DFT). Those modifications are made on the magnitude of specific frequency bands and they are the least possible additive information ensuring robustness and imperceptiveness. We have experimentally evaluated our algorithms using various images of different characteristics under JPEG compression. The experimental results show an improvement in comparison to the previously obtained results and they also depict the validity of our proposed codec algorithms.
We develop and evaluate a data hiding method that enables smartphones to encrypt and embed sensitive information into carrier streams of sensor data. Our evaluation considers multiple handsets and a variety of data types, and we demonstrate that our method has a computational cost that allows real-time data hiding on smartphones with negligible distortion of the carrier stream. These characteristics make it suitable for smartphone applications involving privacysensitive data such as medical monitoring systems and digital forensics tools.
Fourier transform infrared (FTIR) microspectroscopy images contain information from the whole infrared spectrum used for microspectroscopic analyses. In combination with the FTIR image, visible light images are used to depict the area from which the FTIR spectral image was sampled. These two images are traditionally acquired as separate files. This paper proposes a histogram shifting-based data hiding technique to embed visible light images in FTIR spectral images producing single entities. The primary objective is to improve data management efficiency. Secondary objectives are confidentiality, availability, and reliability. Since the integrity of biomedical data is vital, the proposed method applies reversible data hiding. After extraction of the embedded data, the FTIR image is reversed to its original state. Furthermore, the proposed method applies authentication tags generated with keyed Hash-Based Message Authentication Codes (HMAC) to detect tampered or corrupted areas of FTIR images. The experimental results show that the FTIR spectral images carrying the payload maintain good perceptual fidelity and the payload can be reliably recovered even after bit flipping or cropping attacks. It has been also shown that extraction successfully removes all modifications caused by the payload. Finally, authentication tags successfully indicated tampered FTIR image areas.
Simultaneous MREG and EEG recordings are vastly used in neurobiology, but so far they are stored and handled as separate files. This paper proposes a method to combine those two entities with the objective of establishing data management efficiency, while secondary objectives are confidentiality, availability and reliability in data. To be more specific, it is a reversible data hiding method for hiding EEG in MREG with the ability of fully recovering MREG and the embedded EEG signal. It is based on histogram shifting, exploiting data quantization and Region of Interest segmentation. The embedding procedure maintains temporal synchronization between EEG and 32-bit MREG making it a novel data hiding application. It is demonstrated through experiments that MREG maintains high perceptual fidelity and also verified that after EEG extraction and acquisition of every electrode's sample, MREG is fully reversed to its exact initial state.
Pain is a complex phenomenon, the experience of which varies widely across individuals. At worst, chronic pain can lead to anxiety and depression. Cost-effective strategies are urgently needed to improve the treatment of pain, and thus we propose a novel home-based pain measurement system for the longitudinal monitoring of pain experience and variation in different patients with chronic low back pain. The autonomous nervous system and audio-visual features are analyzed from heart rate signals, voice characteristics and facial expressions using a unique measurement protocol. Self-reporting is utilized for the follow-up of changes in pain intensity, induced by well-designed physical maneuvers, and for studying the consecutive trends in pain. We describe the study protocol, including hospital measurements and questionnaires and the implementation of the home measurement devices. We also present different methods for analyzing the multimodal data: electroencephalography, audio, video and heart rate. Our intention is to provide new insights using technical methodologies that will be beneficial in the future not only for patients with low back pain but also patients suffering from any chronic pain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.