Provenance and tectonic history of the late Eocene-early Oligocene submarine fans and shelf deposits on Lemnos Island, NE Greece, were studied using sandstone framework composition, sedimentological data and sandstone and mudstone geochemistry. The resulting tectonicsedimentological model is based on the late Eocene-early Oligocene Lemnos Island being in a forearc basin with the outer arc ridge as a major sediment source. Modal petrographic analysis of the studied sandstones shows that the source area comprises sedimentary, metamorphic and plutonic igneous rocks deposited in the studied area in a recycled orogenic environment. Moreover, within the above sediments, the minor occurrence of volcanic fragments suggests little or no influence of a volcanic source. Provenance results, based on major, trace and rare earth element (REE) data, suggest an active continental margin/continental island arc signature. All the samples are LREE, enriched relative to HREE, with a flat HREE pattern and positive Eu anomalies, suggesting that the processes of intracrustal differentiation (involving plagioclase fractionation) were not of great importance. Results derived from the multi-element diagrams also suggest an active margin character, and a mafic/ultramafic source rock composition, while the positive anomaly of Zr that can be attributed to a passive continental margin source, is most likely associated with reworking and sorting during sediment transfer. Palaeocurrents, with a NE-NNE direction, indicate a northeast flow, towards the location of the late Eocene-early Oligocene magmatic belt in the north-east Aegean region. Conglomerates are composed of chert, gneiss and igneous fragments, such as basalts and gabbros, suggesting this outer arc ridge as a likely source area.
An integrated study of sedimentological, sequence-stratigraphic and palaeodispersal analysis was applied to the Upper-Permian clastic sedimentary succession in the Northern Sydney Basin, Australia. The succession is subdivided into fifteen facies and three facies associations. The facies associations are further subdivided into eight sub-facies associations. The sedimentary evolution involves progradation from delta-front to delta-plain to fluvial depositional environments, with a significant increase in sediment grain size across the unconformable contact that separates the deltaic from the overlying fluvial system. In contrast to the delta front that is wave/storm- and/or river-influenced, the delta plain is significantly affected by tides, with the impact of tidal currents decreasing up-sequence in the delta plain. The general lack of wave-influenced sedimentary structures suggests low wave energy in the delta plain. The abrupt termination of the tidal impact in the fluvial realm relates to the steep topographic gradients and high sediment supply, which accompanied the uplift of the New England Orogen. The sequence-stratigraphic framework includes highstand (deltaic forest and topset) and lowstand (fluvial topset) systems tracts, separated by a subaerial unconformity. In contrast to most of the mud-rich modern counterparts, this is an example of a sand-rich tidally influenced deltaic system, developed adjacent to the source region. This investigation presents a depositional model for tidal successions in regions of tectonic uplift and confinement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.