Metal–organic frameworks (MOFs) are among the most attractive porous materials available today. They have garnered much attention for their potential utility in many different areas such as gas storage, separation, catalysis, and biomedicine. However, very little is known about the possible health or environmental risks of these materials. Here, the results of toxicity studies on sixteen representative uncoated MOF nanoparticles (nanoMOFs), which were assessed for cytotoxicity to HepG2 and MCF7 cells in vitro, and for toxicity to zebrafish embryos in vivo, are reported. Interestingly, there is a strong correlation between their in vitro toxicity and their in vivo toxicity. NanoMOFs were ranked according to their respective in vivo toxicity (in terms of the amount and severity of phenotypic changes observed in the treated zebrafish embryos), which varied widely. Altogether these results show different levels of toxicity of these materials; however, leaching of solubilized metal ions plays a main role.
The quorum-sensing (QS) system present in the emerging nosocomial pathogen Stenotrophomonas maltophilia is based on the signaling molecule diffusible signal factor (DSF). Production and detection of DSF are governed by the rpf cluster, which encodes the synthase RpfF and the sensor RpfC, among other components. Despite a well-studied system, little is known about its implication in virulence regulation in S. maltophilia. Here, we have analyzed the rpfF gene from 82 S. maltophilia clinical isolates. Although rpfF was found to be present in all of the strains, it showed substantial variation, with two populations (rpfF-1 and rpfF-2) clearly distinguishable by the N-terminal region of the protein. Analysis of rpfC in seven complete genome sequences revealed a corresponding variability in the N-terminal transmembrane domain of its product, suggesting that each RpfF variant has an associated RpfC variant. We show that only RpfC-RpfF-1 variant strains display detectable DSF production. Heterologous rpfF complementation of ⌬rpfF mutants of a representative strain of each variant suggests that RpfF-2 is, however, functional and that the observed DSF-deficient phenotype of RpfC-RpfF-2 variant strains is due to permanent repression of RpfF-2 by RpfC-2. This is corroborated by the ⌬rpfC mutant of the RpfC-RpfF-2 representative strain. In line with this observations, deletion of rpfF from the RpfC-RpfF-1 strain leads to an increase in biofilm formation, a decrease in swarming motility, and relative attenuation in the Caenorhabditis elegans and zebrafish infection models, whereas deletion of the same gene from the representative RpfC-RpfF-2 strain has no significant effect on these virulence-related phenotypes. Q uorum sensing (QS) is a bacterial cell-cell communication process that allows bacteria to synchronize particular behaviors on a population-wide scale. Within current knowledge, QS in Stenotrophomonas maltophilia depends on the diffusible signal factor QS (DSF-QS) system, which is based mainly on the fatty acid DSF (cis-11-methyl-2-dodecenoic acid) (1, 2). DSF synthesis is fully dependent on RpfF, an enoyl coenzyme A hydratase encoded by the rpf (regulation of pathogenicity factors) cluster, a set of genes that includes all of the components necessary for the synthesis and detection of DSF molecules. In addition to RpfF, rpf encodes the aconitase RpfA, the fatty acid ligase RpfB, the two-component sensor-effector hybrid system RpfC, and the cytoplasmic regulator element RpfG (1, 2). The DSF-QS system was first described in the phytopathogen Xanthomonas campestris pv. campestris, where it plays an important role in virulence regulation (3). Since then, this system has been described in several members of the order Xanthomonadales, including the genera Xanthomonas, Xylella, and Stenotrophomonas, as well as in members of the order Burkholderiales (1, 3-5). The specific functions regulated by the DSF-QS system are dependent on the species, but it has been suggested that it controls several virulence-related phenotypes (6...
Stenotrophomonas maltophilia uses the Diffusible Signal Factor (DSF) quorum sensing (QS) system to mediate intra- and inter-specific signaling and regulate virulence-related processes. The components of this system are encoded by the rpf cluster, with genes rpfF and rpfC encoding for the DSF synthase RpfF and sensor RpfC, respectively. Recently, we have shown that there exist two variants of the rpf cluster (rpf-1 and rpf-2), distinguishing two groups of S. maltophilia strains. Surprisingly, only rpf-1 strains produce detectable DSF, correlating with their ability to control biofilm formation, swarming motility and virulence. The evolutive advantage of acquiring two different rpf clusters, the phylogenetic time point and mechanism of this acquisition and the conditions that activate DSF production in rpf-2 strains, are however not known. Examination of this cluster in various species suggests that its variability originated most probably by genetic exchange between rhizosphere bacteria. We propose that rpf-2 variant strains make use of a strategy recently termed as “social cheating.” Analysis of cellular and extracellular fatty acids (FAs) of strains E77 (rpf-1) and M30 (rpf-2) suggests that their RpfFs have also a thioesterase activity that facilitates the release of unspecific FAs to the medium in addition to DSF. Production of DSF in rpf-1 strains appears in fact to be modulated by some of these extracellular FAs in addition to other factors such as temperature and nutrients, while in rpf-2 strains DSF biosynthesis is derepressed only upon detection of DSF itself, suggesting that they require cohabitation with DSF-producer bacteria to activate their DSF regulatory machinery. Finally, we show that the mixed rpf-1/rpf-2 population presents synergism in DSF production and virulence capacity in an in vivo infection model. Recovery and quantification of DSF from co-infected animals correlates with the observed mortality rate.
Herein we report the use of immunostimulant-loaded nanoliposomes (called NLcliposomes) as a strategy to protect fish against bacterial and/or viral infections. This work entailed developing a method for in vivo tracking of the liposomes administered to adult zebrafish that enables evaluation of their in vivo dynamics and characterisation of their tissue distribution. The NLc liposomes, which co-encapsulate poly(I:C) and LPS, accumulate in immune tissues and in immunologically relevant cells such as macrophages, as has been assessed in trout primary cell cultures. They protect zebrafish against otherwise lethal bacterial (Pseudomonas aeruginosa PAO1) and viral (Spring Viraemia of Carp Virus) infections regardless of whether they are administered by injection or by immersion, as demonstrated in a series of in vivo infection experiments with adult zebrafish. Importantly, protection was not achieved in fish that had been treated with empty liposomes or with a mixture of the free immunostimulants. Our findings indicate that stimulation of the innate immune system with co-encapsulated immunostimulants in nano-liposomes is a promising strategy to simultaneously improve the levels of protection against bacterial and viral infections in fish.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.