Works distribution is a routine carried out every day by the head of the branch in the SHARP Service Center. The accuracy of the labor division is very important to get customer satisfaction. Inappropriate work distribution can increase complaints from customers. Currently, works distribution in SHARP Service Center is carried out manually, where the works received on the selected system is then shared through the document provided. Time taken for this process is about 1.42 minutes on average for each damage reports. Speed of Service also depends on the Head of Department's expertise and experience. In this study, an automatic system based on Machine Learning will be designed for the technicians work distribution by using a combination of k Nearest Neighbor (k-NN) and Naïve Bayes. Naïve Bayes algorithm is used to improve the feature extraction accuracy by considering the feature below the average (α). Meanwhile, k-NN algorithm is used to classify the experimental data. From the study, it is found that the best of k value for k-NN algorithm is 15. It is known that a high number of accuracy values, the labor distribution can be more accurate. The validation of the proposed method is conducted by using a confusion matrix with a composition of 80% training data and 20% test data. The single Classifier test with the Naïve Bayes algorithm produces the highest accuracy value of 72.7%, while using k-NN algorithm is 81.5%. With a combination of Naive , ,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.