Westudy the structural characteristic of carbon based thin filmprepared by DC unbalanced magnetron sputtering technique on different buffer layer such as γ-Al2O3, SnO2, and Cu. Sputtering parameters of carbon thin film were maintained identical for each buffer layer. Fe-doped carbon pellet and Argon gas have been used as sputtering target and to generate the sputtering plasma, respectively. The roles of buffer layer for the quality of carbon-based thin film have been investigated by X-ray diffraction and Raman spectroscopy analysis. Raman spectra indicatethe formation of agoodquality carbon thin film with crystal-like structure on γ-Al2O3and Cu buffer layer, in contrast to the SnO2buffer layer case. Furthermore Raman spectra confirm thehoneycomb structure with fewer defects in γ-Al2O3indicating that it is more suitable buffer layer than the other. We argue that γ-Al2O3buffer layerprovide a good nucleation site and promote a better atomic arrangement for carbon atoms to form a few layergraphene-like structure. The atomic geometry of γ-Al2O3supports the hexagonal atomic configurationfor carbon atom inthe formation of a few layers graphene. This study mightgive a new approach for the carbon based deposition towards the devices application.
The electrical properties of Metal Insulator Semiconductor (MIS) structure comprise of carbon-based thin film grown on γ-Al2O3/Si have been studied. The carbon based thin film is deposited by using DC unbalanced magnetron sputtering using Fe doped carbon pellet as a target. Electrical properties of this structure have been analyzed through I-V characteristics measurements using cross-sectional electrode configurations. In-plane I-V measurement confirms the electrical conductivity of carbon layer is higher than Al2O3. The role of carbon thin film has been investigated by comparing the I-V characteristic of MIS structure with and without carbon thin film. Carbon layer and interface states of carbon/γ-Al2O3 have a significant contribution to enhance the cross-sectional current density. A simple energy band diagram model and theoretical calculation have been developed to further analyze this I-V characteristics data. This study is expected to be an alternative way to support the realization of future carbon-based electronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.