Fe2O3/C nanocomposites were successfully synthesized using microwave assisted calcination method. Ferric (III) chloride hexahydrate (FeCl36H2O), sodium hydroxide (NaOH), and dextrose monohydrate (C6H12O6H2O) were used as precursors. A microwave oven of 2.445 GHz with a power of 600 W for 20 minutes was employed during the syntheses. Calcination was performed in a simple furnace at 350 °C for 30 min. The molar ratio of C:Fe is the only process parameter. From Scanning Electron Microscope images, the average particle size were 199 nm and 74 nm for the samples with molar ratio of C:Fe of 1:2 and 1:1, respectively. X-ray diffractometer spectra showed that the obtained samples have γ-Fe2O3 (maghemite) crystal structure. Using the Scherrer method, the crystallite size were 61.7, 58.8, 52.5, and 48.8 nm for the samples with the molar ratios of C:Fe of 1:3, 1:2, 1:1, and 2:1, respectively. It means that the crystallite size of the nanocomposite decreases with the increase of the molar ratio of carbon to iron (C:Fe). The Brunauer-Emmett-Teller characterization showed that the surface area as high as 255.6 m2/g is achieved by of the Fe2O3/C nanocomposite with the molar ratio of C:Fe of 1:1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.