Rear-end collisions are the most common type of traffc accident. On the highway, a real-end collision may involve more than two vehicles and cause a pile-up or chain-reaction crash. Referring to data released by the Australian Capital Territory (ACT), rear-end collisions which occurred throughout 2010 constituted as much as 43.65% of all collisions. In most cases, these rear-end collisions are caused by inattentive drivers, adverse road conditions and poor following distance. The Rear-end Collision Avoidance System (RCAS) is a device to help drivers to avoid rear-end collisions. The RCAS is a subsystem of Advanced Driver Assistance Systems (ADASs) and became an important part of the driverless car. This paper discusses a hardware simulation of a RCAS based on fuzzy logic using a remote control car. The Mamdani method was used as a fuzzy inference system and realized by using the Arduiono Uno microcontroller system. Simulation results showed that the fuzzy logic algorithm of RCAS can work as designed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.