This paper introduces a novel method to evaluate the local impact of behavioral scenarios on disease prevalence and burden with representative individual level data while ensuring that the model is in agreement with the qualitative patterns of global relative risk (RR) estimates. The method is used to estimate the impact of behavioral scenarios on the burden of disease due to ischemic heart disease (IHD) and diabetes in the Turkish adult population. Methods Disease specific Hierarchical Bayes (HB) models estimate the individual disease probability as a function of behaviors, demographics, socio-economics and other controls, where constraints are specified based on the global RR estimates. The simulator combines the counterfactual disease probability estimates with disability adjusted life year (DALY)-perprevalent-case estimates and rolls up to the targeted population level, thus reflecting the local joint distribution of exposures. The Global Burden of Disease (GBD) 2016 study metaanalysis results guide the analysis of the Turkish National Health Surveys (2008 to 2016) that contain more than 90 thousand observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.