RNA-Seq made possible the global identification of fusion transcripts, i.e. “chimeric RNAs”. Even though various software packages have been developed to serve this purpose, they behave differently in different datasets provided by different developers. It is important for both users, and developers to have an unbiased assessment of the performance of existing fusion detection tools. Toward this goal, we compared the performance of 12 well-known fusion detection software packages. We evaluated the sensitivity, false discovery rate, computing time, and memory usage of these tools in four different datasets (positive, negative, mixed, and test). We conclude that some tools are better than others in terms of sensitivity, positive prediction value, time consumption and memory usage. We also observed small overlaps of the fusions detected by different tools in the real dataset (test dataset). This could be due to false discoveries by various tools, but could also be due to the reason that none of the tools are inclusive. We have found that the performance of the tools depends on the quality, read length, and number of reads of the RNA-Seq data. We recommend that users choose the proper tools for their purpose based on the properties of their RNA-Seq data.
Fusion transcripts (i.e. chimeric RNAs) resulting from gene fusions have been used successfully for cancer diagnosis, prognosis, and therapeutic applications. In addition, many fusion transcripts are found in normal human cell lines and tissues, with some data supporting their role in normal physiology. Besides chromosomal rearrangement, intergenic splicing can generate them. Global identification of fusion transcripts becomes possible with the help of Next Generation Sequencing (NGS) technology like RNA-Seq. In the past decade, major advancements have been made for chimeric RNA discovery due to the development of advanced sequencing platform and software packages. However, current software tools behave differently in terms of specificity, sensitivity, time, and computational memory usage. Recent benchmarking studies showed that none of the tools are inclusive. The development of high performance (accurate and fast), and user-friendly fusion detection tool/pipeline is still an open quest. In this article, we review the existing software packages for fusion detection. We explain the methods of the tools, and discuss various factors that affect fusion detection. We summarize conclusions drawn from several comparative studies, and then discuss some of the pitfalls of these studies. We also describe the limitations of current tools, and suggest directions for future development.
The cover image, by Shailesh Kumar et al., is based on the Advanced Review Identifying fusion transcripts using next generation sequencing, DOI: .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.