While T cells have been clearly implicated in a number of disease processes including autoimmunity, graft rejection, and atypical immune responses, the precise Ags recognized by the pathogenic T cells have often been difficult to identify. This has particularly been true for MHC class II-restricted CD4+ T cells. Although such cells can be demonstrated to have undergone clonal expansion at sites of pathology, they are frequently difficult to establish as stable T cell clones. Furthermore, in general, larger peptides in higher concentrations are required to stimulate CD4+ T cells than CD8+ T cells, which makes some of the techniques developed to identify CD8+ T cell Ags impractical. To circumvent some of these problems, we developed a model system consisting of two parts. The first part involves the construction of an indicator T cell hybridoma expressing a chimeric TCR comprised of murine constant regions and human variable regions specific for influenza hemagglutinin 307–319 presented by DR4. The second part consists of a library of fibroblasts each expressing multiple peptides as amino terminal covalent extensions of the β-chain of HLA-DR4 (DRA1*0101, DRB1*0401). Using this model system, we screened ∼100,000 peptides and identified three novel peptides stimulatory for the HA1.7 TCR. While there is some convergence at residues known to be important for T cell recognition, all three peptides differ markedly from each other and bear little resemblance to wild-type hemagglutinin 307–319.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.