The tomato (Solanum lycopersicum L.) is one of the many essential vegetables around the world due to its nutritive content and attractive flavor. However, its short shelf-life and postharvest losses affect its marketing. In this study, the effects of chitosan-Ruta graveolens (CS + RGEO) essential oil coatings on the postharvest quality of Tomato var. “chonto” stored at low temperature (4 °C) for 12 days are reported. The film-forming dispersions (FFD) were eco-friendly synthesized and presented low viscosities (between 0.126 and 0.029 Pa s), small particle sizes (between 1.29 and 1.56 μm), and low densities. The mature index (12.65% for uncoated fruits and 10.21% for F4 coated tomatoes), weight loss (29.8% for F1 and 16.7% for F5 coated tomatoes), and decay index (3.0 for uncoated and 1.0 for F5 coated tomatoes) were significantly different, indicating a preservative effect on the quality of the tomato. Moreover, aerobic mesophilic bacteria were significantly reduced (in five Log CFU/g compared to control) by using 15 μL/mL of RGEO. The coatings, including 10 and 15 μL/mL of RGEO, completely inhibited the mold and yeast growth on tomato surfaces without negatively affecting the consumer acceptation, as the sensorial analysis demonstrated. The results presented in this study show that CS + RGEO coatings are promising in the postharvest treatment of tomato var. “chonto”.
Pears (Pyrus communis L.) cv. Packham’s Triumph are very traditional for human consumption, but pear is a highly perishable climacteric fruit with a short shelf-life affected by several diseases with a microbial origin. In this study, a protective effect on the quality properties of pears was evidenced after the surface application of chitosan-Ruta graveolens essential oil coatings (CS + RGEO) in four different concentrations (0, 0.5, 1.0 and 1.5 %, v/v) during 21 days of storage under 18 °C. After 21 days of treatment, a weight loss reduction of 10% (from 40.2 ± 5.3 to 20.3 ± 3.9) compared to the uncoated pears was evident with CS + RGEO 0.5%. All the fruits’ physical-chemical properties evidenced a protective effect of the coatings. The maturity index increased for all the treatments. However, the pears with CS + RGEO 1.5% were lower (70.21) than the uncoated fruits (98.96). The loss of firmness for the uncoated samples was higher compared to the coated samples. The pears’ most excellent mechanical resistance was obtained with CS + RGEO 0.5% after 21 days of storage, both for compression resistance (7.42 kPa) and force (22.7 N). Microbiological studies demonstrated the protective power of the coatings. Aerobic mesophilic bacteria and molds were significantly reduced (in 3 Log CFU/g compared to control) using 15 µL/mL of RGEO, without affecting consumer perception. The results presented in this study showed that CS + RGEO coatings are promising in the post-harvest treatment of pears.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.