Avian viral diseases including avian influenza, Marek’s disease and Newcastle disease are detrimental to economies around the world that depend on the poultry trade. A significant zoonotic threat is also posed by avian influenza viruses. Vaccination is an important and widely used method for controlling these poultry diseases. However, the current vaccines do not provide full protection or sterile immunity. Hence, there is a need to develop improved vaccines. The major aim of developing improved vaccines is to induce strong and specific humoral and cellular immunity in vaccinated animals. One strategy used to enhance the immunogenicity of vaccines is the selective delivery of protective antigens to antigen-presenting cells (APCs) including dendritic cells, macrophages and B cells. APCs have a central role in the initiation and maintenance of immune responses through their ability to capture, process and present antigens to T and B cells. Vaccine technology that selectively targets APCs has been achieved by coupling antigens to monoclonal antibodies or ligands that are targeted by APCs. The aim of this review is to discuss existing strategies of selective delivery of antigens to APCs for effective vaccine development in poultry.
Passive immunisation with neutralising antibodies can be a potent therapeutic strategy if used pre-or post-exposure to a variety of pathogens. Herein, we investigated whether recombinant monoclonal antibodies (mAbs) could be used to protect chickens against avian influenza. Avian influenza viruses impose a significant economic burden on the poultry industry and pose a zoonotic infection risk for public health worldwide. Traditional control measures including vaccination do not provide rapid protection from disease, highlighting the need for alternative disease mitigation measures. In this study, previously generated neutralizing anti-H9N2 virus monoclonal antibodies were converted to single-chain variable fragment antibodies (scFvs). These recombinant scFv antibodies were produced in insect cell cultures and the preparations retained neutralization capacity against an H9N2 virus in vitro. To evaluate recombinant scFv antibody efficacy in vivo, chickens were passively immunized with scFvs one day before, and for seven days after virus challenge. Groups receiving scFv treatment showed partial virus load reductions measured by plaque assays and decreased disease manifestation. These results indicate that antibody therapy could reduce clinical disease and shedding of avian influenza virus in infected chicken flocks.
The immunogenicity and protective efficacy of vaccines can be enhanced by the selective delivery of antigens to the antigen-presenting cells (APCs). In this study, H9N2 avian influenza virus haemagglutinin (HA) antigen, was targeted by fusing it to single-chain fragment variable (scFv) antibodies specific to CD83 receptor expressed on chicken APCs. We observed an increased level of IFNγ, IL6, IL1β, IL4, and CxCLi2 mRNA upon stimulation of chicken splenocytes ex vivo by CD83 scFv targeted H9HA. In addition, CD83 scFv targeted H9HA induced higher serum haemagglutinin inhibition activity and virus neutralising antibodies compared to untargeted H9HA, with induction of antibodies as early as day 6 post primary vaccination. Furthermore, chickens vaccinated with CD83 scFv targeted H9HA showed reduced H9N2 challenge virus shedding compared to untargeted H9HA. These results suggest that targeting antigens to CD83 receptors could improve the efficacy of poultry vaccines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.