Mutations in C9ORF72 are the most common cause of familial amyotrophic lateral sclerosis (ALS). Here, through a combination of RNA-Seq and electrophysiological studies on induced pluripotent stem cell (iPSC)-derived motor neurons (MNs), we show that increased expression of GluA1 AMPA receptor (AMPAR) subunit occurs in MNs with C9ORF72 mutations that leads to increased Ca2+-permeable AMPAR expression and results in enhanced selective MN vulnerability to excitotoxicity. These deficits are not found in iPSC-derived cortical neurons and are abolished by CRISPR/Cas9-mediated correction of the C9ORF72 repeat expansion in MNs. We also demonstrate that MN-specific dysregulation of AMPAR expression is also present in C9ORF72 patient post-mortem material. We therefore present multiple lines of evidence for the specific upregulation of GluA1 subunits in human mutant C9ORF72 MNs that could lead to a potential pathogenic excitotoxic mechanism in ALS.
Axonal loss is the key pathological substrate of neurological disability in demyelinating disorders, including multiple sclerosis (MS). However, the consequences of demyelination on neuronal and axonal biology are poorly understood. The abundance of mitochondria in demyelinated axons in MS raises the possibility that increased mitochondrial content serves as a compensatory response to demyelination. Here, we show that upon demyelination mitochondria move from the neuronal cell body to the demyelinated axon, increasing axonal mitochondrial content, which we term the axonal response of mitochondria to demyelination (ARMD). However, following demyelination axons degenerate before the homeostatic ARMD reaches its peak. Enhancement of ARMD, by targeting mitochondrial biogenesis and mitochondrial transport from the cell body to axon, protects acutely demyelinated axons from degeneration. To determine the relevance of ARMD to disease state, we examined MS autopsy tissue and found a positive correlation between mitochondrial content in demyelinated dorsal column axons and cytochrome c oxidase (complex IV) deficiency in dorsal root ganglia (DRG) neuronal cell bodies. We experimentally demyelinated DRG neuron-specific complex IV deficient mice, as established disease models do not recapitulate complex IV deficiency in neurons, and found that these mice are able to demonstrate ARMD, despite the mitochondrial perturbation. Enhancement of mitochondrial dynamics in complex IV deficient neurons protects the axon upon demyelination. Consequently, increased mobilisation of mitochondria from the neuronal cell body to the axon is a novel neuroprotective strategy for the vulnerable, acutely demyelinated axon. We propose that promoting ARMD is likely to be a crucial preceding step for implementing potential regenerative strategies for demyelinating disorders.
Background Hospital-based studies have reported variable associations between outcome after spontaneous intracerebral hemorrhage and peri-hematomal edema volume. Aims In a community-based study, we aimed to investigate the existence, strength, direction, and independence of associations between intracerebral hemorrhage and peri-hematomal edema volumes on diagnostic brain CT and one-year functional outcome and long-term survival. Methods We identified all adults, resident in Lothian, diagnosed with first-ever, symptomatic spontaneous intracerebral hemorrhage between June 2010 and May 2013 in a community-based, prospective inception cohort study. We defined regions of interest manually and used a semi-automated approach to measure intracerebral hemorrhage volume, peri-hematomal edema volume, and the sum of these measurements (total lesion volume) on first diagnostic brain CT performed at ≤3 days after symptom onset. The primary outcome was death or dependence (scores 3–6 on the modified Rankin Scale) at one-year after intracerebral hemorrhage. Results Two hundred ninety-two (85%) of 342 patients (median age 77.5 y, IQR 68–83, 186 (54%) female, median time from onset to CT 6.5 h (IQR 2.9–21.7)) were dead or dependent one year after intracerebral hemorrhage. Peri-hematomal edema and intracerebral hemorrhage volumes were colinear ( R2 = 0.77). In models using both intracerebral hemorrhage and peri-hematomal edema, 10 mL increments in intracerebral hemorrhage (adjusted odds ratio (aOR) 1.72 (95% CI 1.08–2.87); p = 0.029) but not peri-hematomal edema volume (aOR 0.92 (0.63–1.45); p = 0.69) were independently associated with one-year death or dependence. 10 mL increments in total lesion volume were independently associated with one-year death or dependence (aOR 1.24 (1.11–1.42); p = 0.0004). Conclusion Total volume of intracerebral hemorrhage and peri-hematomal edema, and intracerebral hemorrhage volume alone on diagnostic brain CT, undertaken at three days or sooner, are independently associated with death or dependence one-year after intracerebral hemorrhage, but peri-hematomal edema volume is not. Data access statement Anonymized summary data may be requested from the corresponding author.
OBJECTIVE This study aimed to determine the trial discontinuation and publication rate of randomized controlled trials (RCTs) in neurosurgery. METHODS Trials registered from 2000 to 2012 were identified on the website clinicaltrials.gov using a range of key words related to neurosurgery. Any trials that were actively recruiting or had unknown status were excluded. Included trials were assessed for whether they were discontinued early on the clinicaltrials.gov database; this included trials identified as withdrawn, suspended, or terminated in the database. For included trials, a range of parameters was identified including the subspecialty, primary country, study start date, type of intervention, number of centers, and funding status. Subsequently, a systematic search for published peer-reviewed articles was undertaken. For trials that were discontinued early or were found to be unpublished, principal investigators were sent a querying email. RESULTS Sixty-four neurosurgical trials fulfilled our inclusion criteria. Of these 64, 26.6% were discontinued early, with slow or insufficient recruitment cited as the major reason (57%). Of the 47 completed trials, 14 (30%) remained unpublished. Discontinued trials showed a statistically significant higher chance of remaining unpublished (88%) compared with completed trials (p = 0.0002). Industry-funded trials had a higher discontinuation rate (31%) compared with non-industry-funded trials (23%), but this result did not reach significance (p = 0.57). Reporting of primary outcome measures was complete in 20 (61%) of 33 trials. For secondary outcome measures, complete reporting occurred in only 11 (33.3%) of 33. CONCLUSIONS More than a fifth (26.6%) of neurosurgical RCTs are discontinued early and almost a third of those that are completed remain unpublished. This result highlights significant waste of financial resources and clinical data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.