Most methods for time series classification that attain state-of-the-art accuracy have high computational complexity, requiring significant training time even for smaller datasets, and are intractable for larger datasets. Additionally, many existing methods focus on a single type of feature such as shape or frequency. Building on the recent success of convolutional neural networks for time series classification, we show that simple linear classifiers using random convolutional kernels achieve state-of-the-art accuracy with a fraction of the computational expense of existing methods.
Rocket achieves state-of-the-art accuracy for time series classification with a fraction of the computational expense of most existing methods by transforming input time series using random convolutional kernels, and using the transformed features to train a linear classifier. We reformulate Rocket into a new method, MiniRocket. MiniRocket is up to 75 times faster than Rocket on larger datasets, and almost deterministic (and optionally, fully deterministic), while maintaining essentially the same accuracy. Using this method, it is possible to train and test a classifier on all of 109 datasets from the UCR archive to state-of-the-art accuracy in under 10 minutes. MiniRocket is significantly faster than any other method of comparable accuracy (including Rocket), and significantly more accurate than any other method of remotely similar computational expense.
CCS CONCEPTS• Computing methodologies → Machine learning; • Information systems → Data mining.
We propose MultiRocket, a fast time series classification (TSC) algorithm that achieves state-of-the-art accuracy with a tiny fraction of the time and without the complex ensembling structure of many state-of-the-art methods. MultiRocket improves on MiniRocket, one of the fastest TSC algorithms to date, by adding multiple pooling operators and transformations to improve the diversity of the features generated. In addition to processing the raw input series, MultiRocket also applies first order differences to transform the original series. Convolutions are applied to both representations, and four pooling operators are applied to the convolution outputs. When benchmarked using the University of California Riverside TSC benchmark datasets, MultiRocket is significantly more accurate than MiniRocket, and competitive with the best ranked current method in terms of accuracy, HIVE-COTE 2.0, while being orders of magnitude faster.
We demonstrate a simple connection between dictionary methods for time series classification, which involve extracting and counting symbolic patterns in time series, and methods based on transforming input time series using convolutional kernels, namely Rocket and its variants. We show that by adjusting a single hyperparameter it is possible to move by degrees between models resembling dictionary methods and models resembling Rocket. We present Hydra, a simple, fast, and accurate dictionary method for time series classification using competing convolutional kernels, combining key aspects of both Rocket and conventional dictionary methods. Hydra is faster and more accurate than the most accurate existing dictionary methods, and can be combined with Rocket and its variants to further improve the accuracy of these methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.