An oscillation threshold of 780mW has been demonstrated in a singly-resonant, continuous-wave optical parametric oscillator (CW SRO) using a fiber-amplified, distributed feedback (DFB) fiber laser as pump source. A linewidth of 1MHz was measured, and the idler frequency was fine-tuned by up to 130GHz by tuning the pump laser. To our knowledge, this is the first example of a single frequency CW SRO pumped by an all-fiber pump source, a reduction in threshold by a factor of three over previous 1- microm-pumped CW SROs, and a reduction by two orders of magnitude in the linewidth of CW SROs pumped by fiber pump sources.
We have confirmed that single-frequency oscillation of a continuous-wave singly resonant optical parametric oscillator is limited to operation below a critical value of the pumping ratio, as predicted by early theoretical treatments. We also report different regimes of spectral broadening as well as stimulated Raman conversion of the signal wave above this critical pump level. We show that spectral broadening may be eliminated by implementing output coupling of the signal wave and demonstrate 8.6 W of total signal and idler output with single-frequency spectra at both wavelengths for 14.5 W of pump power.
We report on the implementation of an all-solid-state optical parametric oscillator (OPO) laser system, pumped by a fiber laser, and extended by intra-cavity sum frequency generation (SFG) to provide tunable radiation with output powers well beyond 1 W in the visible regime between 605 and 616 nm. We use periodically poled sections for quasi phase-matched OPO and SFG processes, implemented on a single MgO:PPLN crystal. A Pound-Drever-Hall frequency stabilization reduces the laser linewidth to the range of 100 kHz (FWHM), determined by measurements of spectral hole burning in a rare-earth ion doped crystal as well as analysis of side-of-fringe transmission in a low finesse Fabry-Perot resonator.
We demonstrate, for what is the first time to our knowledge, long-term stable, continuously tunable operation of a doubly resonant optical parametric oscillator (OPO) pumped by a single-stripe diode laser without the use of an external semiconductor amplifier. The OPO is based on periodically poled lithium niobate and is pumped by a 150-mW distributed Bragg grating diode laser. 18-mW total output power is generated at 1.3- and 2.3-mum wavelengths. A cavity-length servo system allows continuous signal tuning of 17 GHz and idler tuning of 10 GHz, limited only by the range of a piezoelectric cavity mirror mount. OPO tuning is demonstrated from 1.1 to 1.4 mum and from 2.2 to 3.7 mum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.