Background SARS-CoV2 can induce a strong host immune response. Many studies have evaluated antibody response following SARS-CoV2 infections. This study investigated the immune response and T cell receptor diversity in people who had recovered from SARS-CoV2 infection (COVID-19). Methods Using the nCounter platform, we compared transcriptomic profiles of 162 COVID-19 convalescent donors (CCD) and 40 healthy donors (HD). 69 of the 162 CCDs had two or more time points sampled. Results After eliminating the effects of demographic factors, we found extensive differential gene expression up to 241 days into the convalescent period. The differentially expressed genes were involved in several pathways, including virus-host interaction, interleukin and JAK-STAT signaling, T-cell co-stimulation, and immune exhaustion. A subset of 21 CCD samples was found to be highly “perturbed,” characterized by overexpression of PLAU, IL1B, NFKB1, PLEK, LCP2, IRF3, MTOR, IL18BP, RACK1, TGFB1, and others. In addition, one of the clusters, P1 (n = 8) CCD samples, showed enhanced TCR diversity in 7 VJ pairs (TRAV9.1_TCRVA_014.1, TRBV6.8_TCRVB_016.1, TRAV7_TCRVA_008.1, TRGV9_ENST00000444775.1, TRAV18_TCRVA_026.1, TRGV4_ENST00000390345.1, TRAV11_TCRVA_017.1). Multiplexed cytokine analysis revealed anomalies in SCF, SCGF-b, and MCP-1 expression in this subset. Conclusions Persistent alterations in inflammatory pathways and T-cell activation/exhaustion markers for months after active infection may help shed light on the pathophysiology of a prolonged post-viral syndrome observed following recovery from COVID-19 infection. Future studies may inform the ability to identify druggable targets involving these pathways to mitigate the long-term effects of COVID-19 infection. Trial Registration: https://clinicaltrials.gov/ct2/show/NCT04360278 Registered April 24, 2020.
Background Since the beginning of the COVID‐19 pandemic, cryopreservation of hematopoietic progenitor cell (HPC) products has been increasingly used to ensure allogeneic donor graft availability prior to recipient conditioning for transplantation. However, in addition to variables such as graft transport duration and storage conditions, the cryopreservation process itself may adversely affect graft quality. Furthermore, the optimal methods to assess graft quality have not yet been determined. Study Design and Methods A retrospective review was performed on all cryopreserved HPCs processed and thawed at our facility from 2007 to 2020, including both those collected onsite and by the National Marrow Donor Program (NMDP). HPC viability studies were also performed on fresh products, retention vials, and corresponding final thawed products by staining for 7‐AAD (flow cytometry), AO/PI (Cellometer), and trypan blue (manual microscopy). Comparisons were made using the Mann–Whitney test. Results For HPC products collected by apheresis (HPC(A)), pre‐cryopreservation and post‐thaw viabilities, as well as total nucleated cell recoveries were lower for products collected by the NMDP compared to those collected onsite. However, there were no differences seen in CD34+ cell recoveries. Greater variation in viability testing was observed using image‐based assays compared to flow‐based assays, and on cryo‐thawed versus fresh samples. No significant differences were observed between viability measurements obtained on retention vials versus corresponding final thawed product bags. Discussion Our studies suggest extended transport may contribute to lower post‐thaw viabilities, but without affecting CD34+ cell recoveries. To assess HPC viability prior to thaw, testing of retention vials offers predictive utility, particularly when automated analyzers are used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.