The objective of this study was to estimate the genetic parameters and various litter trait trends of Danish pigs in South Vietnam, including the number born alive (NBA), number weaned (NW), and litter weight at the 21 st day (LW21).Methods: Records of 936 Yorkshire sows with 3361 litters and 973 Landrace sows with 3161 litters were used to estimate the variance components, genetic parameters, and trends of NBA, NW, and LW21. The restricted maximum likelihood method was applied using VCE6 software to obtain the variance components and genetic parameters. Thereafter, the best linear unbiased prediction procedure with an animal model was applied using PEST software to estimate the breeding values of the studied traits.
Results:The heritability estimates were low, ranging from 0.12 to 0.21 for NBA, 0.03 to 0.04 for NW, and from 0.11 to 0.13 for LW21. The genetic correlation between the NBA and NW was relatively strong in both breeds, at 0.77 and 0.60 for Yorkshire and Landrace, respectively.Similarly, the genetic correlation between the NW and LW21 was considerably stronger in Landrace pigs (0.71) than in Yorkshire pigs (0.48). The estimates of annual genetic progress were 0.0431, 0.0233, and 0.0461 for NBA, NW, and LW21 in Landrace pigs and 0434, 0.0202, and 0.0667 for NBA, NW, and LW21 in Yorkshire pigs, respectively.
Conclusion:The positive genetic trends estimated for the additive genetic values of the selected traits indicated that the current breeding system has achieved favorable results.
Cotton fiber is the fundamental material for a textile industry, and currently there is an immense interest in understanding the process of fiber initiation and development. Cotton fiber, also known as seed trichome, is differentiated from the seed coat epidermal cells similar to Arabidopsis leaf trichome, which is differentiated from the leaf epidermal cells. Despite functional characterization of individual cotton fiber initiation genes, currently there is not a comprehensive understanding of the mechanism behind cotton fiber initiation. Since the resemblance in initiation to cotton fiber, the Arabidopsis trichome has been successfully employed as a model system for functional characterization of cotton fiber initiation genes. Knowledge gained from the initiation mechanism of Arabidopsis trichomes will facilitate, as a comparative model system in understanding of the cotton fiber initiation mechanisms.
Summary
Src64 is required for actomyosin contraction during cellularization of the Drosophila embryonic blastoderm. The mechanism of actomyosin ring constriction is poorly understood even though a number of cytoskeletal regulators have been implicated in the assembly, organization, and contraction of these microfilament rings. How these cytoskeletal processes are regulated during development is even less well understood. To investigate the role of Src64 as an upstream regulator of actomyosin contraction, we conducted a proteomics screen to identify proteins whose expression levels are controlled by src64. Global levels of actin are reduced in src64 mutant embryos. Furthermore, we show that reduction of the actin isoform Actin 5C causes defects in actomyosin contraction during cellularization similar to those caused by src64 mutation, indicating that a relatively high level of Actin 5C is required for normal actomyosin contraction and furrow canal structure. However, reduction of Actin 5C levels only slows down actomyosin ring constriction rather than preventing it, suggesting that src64 acts not only to modulate actin levels, but also to regulate the actomyosin cytoskeleton by other means.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.