The extracellular sulfatases (Sulfs) are an evolutionally conserved family of heparan sulfate (HS)-specific 6-O-endosulfatases. These enzymes remodel the 6-O-sulfation of cell surface HS chains to promote Wnt signaling and inhibit growth factor signaling for embryonic tissue patterning and control of tumor growth. In this study we demonstrate that the avian HS endosulfatases, QSulf1 and QSulf2, exhibit the same substrate specificity toward a subset of trisulfated disaccharides internal to HS chains. Further, we show that both QSulfs associate exclusively with cell membrane and are enzymatically active on the cell surface to desulfate both cell surface and cell matrix HS. Mutagenesis studies reveal that conserved amino acid regions in the hydrophilic domains of QSulf1 and QSulf2 have multiple functions, to anchor Sulf to the cell surface, bind to HS substrates, and to mediate HS 6-O-endosulfatase enzymatic activity. Results of our current studies establish the hydrophilic domain (HD) of Sulf enzymes as an essential multifunctional domain for their unique endosulfatase activities and also demonstrate the extracellular activity of Sulfs for desulfation of cell surface and cell matrix HS in the control of extracellular signaling for embryonic development and tumor progression.
Heparan sulfate proteoglycans (HSPGs) are required during muscle regeneration for regulating extracellular signaling pathways. HSPGs interact with growth factors and receptors through heparan sulfate (HS) chains. However, the regulatory mechanisms that control HS sulfation to affect the growth factor-dependent proliferation and differentiation of satellite cells are yet unknown. Here we report the essential functions of extracellular HS 6-O-endosulfatases (Sulfs) during muscle regeneration. We show that quiescent and activated satellite cells differentially express mouse Sulf1 (MSulf1) and MSulf2. MSulfs are not required for the formation of skeletal muscles and satellite cells, but they have redundant, essential roles to promote muscle regeneration, as MSulf double mutant mice exhibit delayed myogenic differentiation and prolonged Pax7 expression after cardiotoxin-induced skeletal muscle injury, while single MSulf knockouts regenerate normally. HS structural analysis demonstrates that Sulfs are regulatory HS-modifying enzymes that control HS 6-O-desulfation of activated satellite cells. Mechanistically, we show that MSulfs repress FGF2 signaling in activated satellite cells, leading us to propose that MSulfs are growth factor signaling sensors to control the proliferation to differentiation switch of satellite cells to initiate differentiation during regeneration. Our results establish Sulfs as essential regulators of HS-dependent growth factor signaling in the adult muscle stem cell niche.
Glycosaminoglycan heparan sulphate interacts with a variety of proteins, such as growth factors, cytokines, enzymes and inhibitors and, thus, influences cellular functions, including adhesion, motility, differentiation and morphogenesis. The interactions generally involve saccharide domains in heparan sulphate chains, with precisely located O-sulphate groups. The 6-O-sulphate groups on glucosamine units, supposed to be involved in various interactions of functional importance, occur in different structural contexts. Three isoforms of the glucosaminyl 6-O-sulphotransferase (6-OST) have been cloned and characterized [H. Habuchi, M. Tanaka, O. Habuchi, K. Yoshida, H. Suzuki, K. Ban and K. Kimata (2000) J. Biol. Chem. 275, 2859-2868]. We have studied the substrate specificities of the recombinant enzymes using various O-desulphated poly- and oligo-saccharides as substrates, and using adenosine 3'-phosphate 5'-phospho[(35)S]sulphate as sulphate donor. All three enzymes catalyse 6-O-sulphation of both -GlcA-GlcNS- and -IdoA-GlcNS- (where GlcA represents D-glucuronic acid, NS the N-sulphate group and IdoA the L-iduronic acid) sequences, with preference for IdoA-containing targets, with or without 2-O-sulphate substituents. 6-OST1 showed relatively higher activity towards target sequences lacking 2-O-sulphate, e.g. the -GlcA-GlcNS- disaccharide unit. Sulphation of such non-O-sulphated acceptor sequences was generally favoured at low acceptor polysaccharide concentrations. Experiments using partially O-desulphated antithrombin-binding oligosaccharide as the acceptor revealed 6-O-sulphation of N-acetylated as well as 3-O-sulphated glucosamine residues with each of the three 6-OSTs. We conclude that the three 6-OSTs have qualitatively similar substrate specificities, with minor differences in target preference.
Heparan sulfate mediates numerous complex biological processes. Its action critically depends on the amount and the positions of O-sulfate groups (iduronyl 2-O-sulfates, glucosaminyl 6-O-and 3-O-sulfates) that form binding sites for proteins. The structures and distribution of these protein-binding domains are influenced by the expression and substrate specificity of heparan sulfate biosynthetic enzymes. We describe a general approach to assess substrate specificities of enzymes involved in glycosaminoglycan metabolism, here applied to 6-O-sulfotransferases involved in heparan sulfate biosynthesis. To understand how 2-O-sulfation affects subsequent 6-O-sulfation reactions, the substrate specificity of 6-O-sulfotransferase 3 was probed using substrates from a heparin-based octasaccharide library. Purified 3 H-labeled N-sulfated octasaccharides from a library designed to sample 2-O-sulfated motifs were used as sulfate acceptors, 3 -phosphoadenosine 5 -phosphosulfate as sulfate donor, and cell extract from 6-Osulfotransferase 3-overexpressing 293 cells as enzyme source in the 6-O-sulfotransferase-catalyzed reactions. The first 6-O-sulfate group was preferentially incorporated at the internal glucosamine unit of the octasaccharide substrate. As the reaction proceeded, the octasaccharides acquired three 6-O-sulfate groups. The specificities toward competing octasaccharide substrates, for 6-Osulfotransferase 2 and 6-O-sulfotransferase 3, were determined using overexpressing 293 cell extracts and purified octasaccharides. Both 6-O-sulfotransferases showed a preference for 2-O-sulfated substrates. The specificity toward substrates with two to three 2-O-sulfate groups was three to five times higher as compared with octasaccharides with no or one 2-O-sulfate group.Heparan sulfate (HS) 1 is a linear polysaccharide present on virtually all cells and in the extracellular matrix (1). HS chains are heterogeneous, with a large number of complex sequences based on variable patterns of N-acetyl, N-sulfate, and O-sulfate groups (2-4). The biosynthesis of the polysaccharide chains begins with the synthesis of an oligosaccharide primer covalently attached to a serine residue in a proteoglycan protein core. HS chains are then generated by the sequential addition of N-acetyl-D-glucosamine (GlcNAc) and D-glucuronate (GlcUA). Along with polymerization the chains undergo a series of modification steps that involve five distinct enzyme families; (i) N-deacetylase/N-sulfotransferase removes the N-acetyl group from GlcNAc units and replaces it with an N-sulfate group (GlcNS); (ii) GlcUA C5 epimerase converts GlcUA to its C5 epimer L-iduronate (IdoUA); (iii) 2-O-sulfotransferase adds 2-O-sulfate groups to IdoUA and GlcUA residues; (iv) 6-O-sulfotransferase (6-OST), and (v) 3-O-sulfotransferase (3-OST) transfer O-sulfate groups to C6 and C3, respectively, of GlcNAc or GlcNS units (2-4). The N-deacetylase/N-sulfotransferase (5-8), the 6-OST (9), and the 3-OST (10 -12) families each contain several members, whereas only one GlcUA C5 epimerase (...
HS (heparan sulfate) proteoglycans are key regulators of vital processes in the body. HS chains with distinct sequences bind to various protein ligands, such as growth factors and morphogens, and thereby function as important regulators of protein gradient formation and signal transduction. HS is synthesized through the concerted action of many different ER (endoplasmic reticulum) and Golgi-resident enzymes. In higher organisms, many of these enzymes occur in multiple isoforms that differ in substrate specificity and spatial and temporal expression. In order to investigate how the structural complexity of HS has evolved, in the present study we focused on the starlet sea anemone (Nematostella vectensis), which belongs to the Anthozoa, which are considered to have retained many ancestral features. Members of all of the enzyme families involved in the generation and modification of HS were identified in Nematostella. Our results show that the enzymes are highly conserved throughout evolution, but the number of isoforms varies. Furthermore, the HS polymerases [Ext (exostosin) enzymes Ext1, Ext2 and Ext-like3] represent distinct subgroups, indicating that these three genes have already been present in the last common ancestor of Cnidaria and Bilateria. In situ hybridization showed up-regulation of certain enzymes in specific areas of the embryo at different developmental stages. The specific mRNA expression pattern of particular HS enzymes implies that they may play a specific role in HS modifications during larval development. Finally, biochemical analysis of Nematostella HS demonstrates that the sea anemone synthesizes a polysaccharide with a unique structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.