Objective. While prosthetic hands with independently actuated digits have become commercially available, state-of-the-art human-machine interfaces (HMI) only permit control over a limited set of grasp patterns, which does not enable amputees to experience sufficient improvement in their daily activities to make an active prosthesis useful. Approach. Here we present a technology platform combining fully-integrated bioelectronics, implantable intrafascicular microelectrodes and deep learning-based artificial intelligence (AI) to facilitate this missing bridge by tapping into the intricate motor control signals of peripheral nerves. The bioelectric neural interface includes an ultra-low-noise neural recording system to sense electroneurography (ENG) signals from microelectrode arrays implanted in the residual nerves, and AI models employing the recurrent neural network (RNN) architecture to decode the subject’s motor intention. Main results. A pilot human study has been carried out on a transradial amputee. We demonstrate that the information channel established by the proposed neural interface is sufficient to provide high accuracy control of a prosthetic hand up to 15 degrees of freedom (DOF). The interface is intuitive as it directly maps complex prosthesis movements to the patient’s true intention. Significance. Our study layouts the foundation towards not only a robust and dexterous control strategy for modern neuroprostheses at a near-natural level approaching that of the able hand, but also an intuitive conduit for connecting human minds and machines through the peripheral neural pathways.
Clinical trial: DExterous Hand Control Through Fascicular Targeting (DEFT). Identifier: NCT02994160.
Objective. Deep learning-based neural decoders have emerged as the prominent approach to enable dexterous and intuitive control of neuroprosthetic hands. Yet few studies have materialized the use of deep learning in clinical settings due to its high computational requirements. Approach. Recent advancements of edge computing devices bring the potential to alleviate this problem. Here we present the implementation of a neuroprosthetic hand with embedded deep learning-based control. The neural decoder is designed based on the recurrent neural network architecture and deployed on the NVIDIA Jetson Nano-a compacted yet powerful edge computing platform for deep learning inference. This enables the implementation of the neuroprosthetic hand as a portable and self-contained unit with real-time control of individual finger movements. Main results. A pilot study with a transradial amputee is conducted to evaluate the proposed system using peripheral nerve signals acquired from implanted intrafascicular microelectrodes. The preliminary experiment results show the system's capabilities of providing robust, high-accuracy (95%-99%) and low-latency (50-120 ms) control of individual finger movements in various laboratory and real-world environments. Conclusion. This work is a technological demonstration of modern edge computing platforms to enable the effective use of deep learning-based neural decoders for neuroprosthesis control as an autonomous system. Significance. The proposed system helps pioneer the deployment of deep neural networks in clinical applications underlying a new class of wearable biomedical devices with embedded artificial intelligence.Clinical trial registration: DExterous Hand Control Through Fascicular Targeting (DEFT). Identifier: NCT02994160.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.