This study proposes the application of Ensemble Decision Tree Boosted (EDT Boosted) model for forecasting the surface chloride concentration of marine concrete A database of 386 experimental results was collected from 17 different sources covering twelve variables was used to build and verify the predictive power of the EDT model. The input factors considered the changes in eleven variables, including the contents of cement, fly ash, blast furnace slag, silica fume, superplasticizer, water, fine aggregate, coarse aggregate, annual mean temperature, chloride concentration in seawater, and exposure time. The results indicate that EDT Boosted is a good predictor of as verified via good performance evaluation criteria, i.e., R2, RMSE, MAE, MAPE values were 0.84, 0.16, 0.17, and 17%, respectively. Partial dependence plot (PDP) was then developed to correlate the eleven input variables with the . PDP implied that the strongest factor affecting Cs was the amount of fine aggregate content, chloride concentration, exposure time, amount of cement, and water, which is useful for material engineers in the design of the grade.
This study proposes the application of Ensemble Decision Tree Boosted (EDT Boosted) model for forecasting the surface chloride concentration of marine concrete A database of 386 experimental results was collected from 17 different sources covering twelve variables was used to build and verify the predictive power of the EDT model. The input factors considered the changes in eleven variables, including the contents of cement, fly ash, blast furnace slag, silica fume, superplasticizer, water, fine aggregate, coarse aggregate, annual mean temperature, chloride concentration in seawater, and exposure time. The results indicate that EDT Boosted is a good predictor of as verified via good performance evaluation criteria, i.e., R2, RMSE, MAE, MAPE values were 0.84, 0.16, 0.17, and 17%, respectively. Partial dependence plot (PDP) was then developed to correlate the eleven input variables with the . PDP implied that the strongest factor affecting Cs was the amount of fine aggregate content, chloride concentration, exposure time, amount of cement, and water, which is useful for material engineers in the design of the grade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.