This study aimed to compare the effect of hot roller (HR) drying and hot air (HA) drying on the sensory evaluation, chemical quality, antioxidant activity, and metabolic profile of Yihong Congou black tea processed from E’cha NO1. The Yihong Congou black tea dried with HA obtained higher sensory scores and better chemical qualities such as the hue of tea brew color (a and b), content of theaflavins, thearubigins, water extract, free amino acids, tea polyphenol, and the ratio of polyphenol to amino acids as well as higher antioxidant capacities compared to that dried with HR. The HA drying tea increased the contents of volatile compounds that had positive correlation with sweet and flowery flavor, while the HR drying tea increased the contents of volatile compounds related to fruity flavor. Moreover, non-targeted metabolomics data indicated that the levels of most free amino acids significantly increased, while the levels of most soluble sugars reduced in the HA drying method compared to the HR drying method. The metabolic analysis was also consistent with the above results and revealed that D-ribose and gallic acid were the main characteristic metabolites of HA drying. Our results could provide a technical reference and theoretical guide to processing a high quality of Yihong Congou black tea.
Tea polyphenols are one of the most important ingredients in Qingzhuan tea. Usually, a chemical method is used to determine tea polyphenols content, but it was time-consuming and laborious. This paper attempted to use near infrared spectroscopy (NIRS) technology combined with three partial least squares methods to predict tea polyphenols content quickly and nondestructively. The partial least squares (PLS), synergy interval PLS (siPLS) and genetic algorithm based PLS (gaPLS) were used to establish prediction models, the performance of the final model was showed by root mean square error of prediction (RMSEP) and determination coefficient (Rp 2 ) in prediction set. The best spectral preprocessing method was multivariate scattering correction (MSC); the RMSEP and R p 2 of PLS model were 0.145% and 0.8974, respectively; the siPLS model was established with four spectral regions (4377.6 cm -1 -4751.7 cm -1 , 4755.6 cm -1 -5129.7 cm -1 , 6262.7 cm -1 -6633.9 cm -1 and 7386 cm -1 -7756.3 cm -1 ), whose RMSEP and R p 2 were 0.0652% and 0.9235, respectively; the gaPLS model was established with 36 spectra dada points and showed the best performance (RMSEP=0.0624%, Rp 2 =0.9769) compared with the PLS and si-PLS models. Therefore, the application of near infrared technology combined with the gaPLS method could predict tea polyphenols content in Qingzhuan tea more accurately and rapidly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.