Patient registries are instrumental for clinical research in rare diseases. They help to achieve a sufficient sample size for epidemiological and clinical research and to assess the feasibility of clinical trials. The European Society for Immunodeficiencies (ESID) registry currently comprises information on >25,000 patients with inborn errors of immunity (IEI). The prerequisite of a patient to be included into the ESID registry is an IEI either defined by a defect in a gene included in the disease classification of the international union of immunological societies (IUIS), or verified by applying clinical criteria. Because a relevant number of patients, including those with common variable immunodeficiency (CVID), representing the largest group of patients in the registry, remains without a genetic diagnosis, consensus on classification of these patients is mandatory. Here, we present clinical criteria for a large number of IEI that were designed in expert panels with external review. They were implemented for novel entries and verification of existing datasets from 2014, yielding a substantial refinement. For instance, 8% of adults and 27% of children with CVID (176 out of 1704 patients) were reclassified to 22 different immunodeficiencies, illustrating progress in genetics, but also the previous lack of standardized disease definitions. Importantly, apart from registry purposes, the clinical criteria are also helpful to support treatment decisions in the absence of a genetic diagnosis or in patients with variants of unknown significance.
BackgroundThe genetic cause of primary immunodeficiency disease (PID) carries prognostic information.ObjectiveWe conducted a whole-genome sequencing study assessing a large proportion of the NIHR BioResource–Rare Diseases cohort.MethodsIn the predominantly European study population of principally sporadic unrelated PID cases (n = 846), a novel Bayesian method identified nuclear factor κB subunit 1 (NFKB1) as one of the genes most strongly associated with PID, and the association was explained by 16 novel heterozygous truncating, missense, and gene deletion variants. This accounted for 4% of common variable immunodeficiency (CVID) cases (n = 390) in the cohort. Amino acid substitutions predicted to be pathogenic were assessed by means of analysis of structural protein data. Immunophenotyping, immunoblotting, and ex vivo stimulation of lymphocytes determined the functional effects of these variants. Detailed clinical and pedigree information was collected for genotype-phenotype cosegregation analyses.ResultsBoth sporadic and familial cases demonstrated evidence of the noninfective complications of CVID, including massive lymphadenopathy (24%), unexplained splenomegaly (48%), and autoimmune disease (48%), features prior studies correlated with worse clinical prognosis. Although partial penetrance of clinical symptoms was noted in certain pedigrees, all carriers have a deficiency in B-lymphocyte differentiation. Detailed assessment of B-lymphocyte numbers, phenotype, and function identifies the presence of an increased CD21low B-cell population. Combined with identification of the disease-causing variant, this distinguishes between healthy subjects, asymptomatic carriers, and clinically affected cases.ConclusionWe show that heterozygous loss-of-function variants in NFKB1 are the most common known monogenic cause of CVID, which results in a temporally progressive defect in the formation of immunoglobulin-producing B cells.
Construction of animal models of human inherited diseases is particularly important for testing gene therapy approaches. Towards this end, we constructed a mouse model for Charcot-Marie-Tooth disease type 1A by pronuclear injection of a YAC containing the human PMP22 gene. In one transgenic line, the YAC DNA is integrated in about eight copies and the PMP22 gene is strongly expressed to give a peripheral neuropathy closely resembling the human pathology. The disorder is dominant, causes progressive weakness of the hind legs, and there is severe demyelination in the peripheral nervous system including the presence of onion bulb formations. This approach will be valuable for pathologies produced by over-expression of a gene including trisomy and amplification in cancer. Such models will be particularly useful for testing gene therapy approaches if the transgene is human.
Charcot-Marie-Tooth disease type 1A is most commonly caused by a duplication of a 1.5 Mb region of chromosome 17 which includes the peripheral myelin protein 22 gene (PMP22). Over-expression of this gene leads to a hypomyelinating/demyelinating neuropathy and to severely reduced nerve conduction velocity. Previous mouse and rat models have had relatively high levels of expression of the mouse or human PMP22 gene leading to severe demyelination. Here we describe five lines of transgenic mice carrying increasing copies of the human PMP22 gene (one to seven) and expressing increasing levels of the transgene. From histological and electrophysiological observations there appears to be a threshold below which expression of PMP22 has virtually no effect; below a ratio of human/mouse mRNA expression of approximately 0.8, little effect is observed. Between a ratio of 0.8 and 1.5, histological and nerve conduction velocity abnormalities are observed, but there are no behavioural signs of neuropathy. An expression ratio >1.5 leads to a severe neuropathy. A second observation concerns the histology of the different lines; the level of expression does not affect the type of demyelination, but influences the severity of involvement.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.