We introduce new results about the shape derivatives of scalar-and vector-valued functions. They extend the results from [8] to more general surface energies. In [8] Dogan and Nochetto consider surface energies defined as integrals over surfaces of functions that can depend on the position, the unit normal and the mean curvature of the surface. In this work we present a systematic way to derive formulas for the shape derivative of more general geometric quantities, including the Gauss curvature (a new result not available in the literature) and other geometric invariants (eigenvalues of the second fundamental form). This is done for hyper-surfaces in the Euclidean space of any finite dimension. As an application of the results, with relevance for numerical methods in applied problems, we introduce a new scheme of Newton-type to approximate a minimizer of a shape functional. It is a mathematically sound generalization of the method presented in [5]. We finally find the particular formulas for the first and second order shape derivative of the area and the Willmore functional, which are necessary for the Newton-type method mentioned above.
We present a Newton type algorithm to find parametric surfaces of prescribed mean curvature with a fixed given boundary. In particular, it applies to the problem of minimal surfaces. The algorithm relies on some global regularity of the spaces where it is posed, which is naturally fitted for discretization with isogeometric type of spaces. We introduce a discretization of the continuous algorithm and present a simple implementation using the recently released isogeometric software library igatools. Finally, we show several numerical experiments which highlight the convergence properties of the scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.