Among several Puerto Rican algae, Sargassum sp. (SG) and Chaetomorpha (CM) showed the highest phenol adsorption capacity from aqueous solutions and were used in optimized adsorption batch experiments at room temperature. The effects of pH, adsorbent dose, phenol concentration, salinity and presence of interfering substances were evaluated. Initial solution pH exhibited a strong effect, mainly on the phenol aqueous chemistry; showing the maximum adsorption at pH 10. Sorption isotherm results were modelled according to the Langmuir, Tempkin and Freundlich equations. Isotherm modelling indicated a maximum adsorption capacity (q max ) of 82.10 and 17.7 mg of phenol per gram of SG and CM, respectively. Salinity and presence of detergent in the matrix solution showed a positive effect on the adsorption, suggesting that adsorption of phenol was mostly driven by polar forces and not by ionic exchange. On the other hand, presence of heavy metals like copper, lead and cobalt had a negative effect on the adsorption. According to these results, the potential formation of hydrogen bonds between the algae and phenol is proposed as the main adsorption mechanism. These results provide further insight into the adsorption mechanism of phenol and their use as inexpensive adsorbents for the treatment of phenol-containing wastewaters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.