Real-valued functions of complex arguments violate the Cauchy-Riemann conditions and, consequently, do not have Taylor series expansion. Therefore, optimization methods based on derivatives cannot be directly applied to this class of functions. This is circumvented by mapping the problem to the field of the real numbers by considering real and imaginary parts of the complex arguments as the new independent variables. We introduce a stochastic optimization method that works within the field of the complex numbers. This has two advantages: Equations on complex arguments are simpler and easy to analyze and the use of the complex structure leads to performance improvements. The method produces a sequence of estimates that converges asymptotically in mean to the optimizer. Each estimate is generated by evaluating the target function at two different randomly chosen points. Thereby, the method allows the optimization of functions with unknown parameters. Furthermore, the method exhibits a large performance enhancement. This is demonstrated by comparing its performance with other algorithms in the case of quantum tomography of pure states. The method provides solutions which can be two orders of magnitude closer to the true minima or achieve similar results as other methods but with three orders of magnitude less resources.
Does quantum theory apply to observers? A resurgence of interest in the long-standing Wigner's friend paradox has shed new light on this fundamental question. Brukner introduced a scenario with two separated but entangled "friends". Here, building on that work, we rigorously prove that if quantum evolution is controllable on the scale of an observer, then one of the following three assumptions must be false: "freedom of choice", "locality", or "observer-independent facts" (i.e. that every observed event exists absolutely, not relatively). We show that although the violation of Bell-type inequalities in such scenarios is not in general sufficient to demonstrate the contradiction between those assumptions, new inequalities can be derived, in a theory-independent manner, which are violated by quantum correlations. We demonstrate this in a proof-of-principle experiment where a photon's path is deemed an observer. We discuss how this new theorem places strictly stronger constraints on quantum reality than Bell's theorem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.