[1] Quantifying long-term erosion of tropical shields is crucial to constraining the role of lateritic regolith covers as prominent sinks and sources of CO 2 and sediments in the context of long-term Cenozoic climate change. It is also a key to understanding long-term landform evolution processes operating over most of the continental surface and their control onto the sediment routing system. We study the surface evolution of West Africa over three erosion periods (~45-24,~24-11 and~11-0 Ma) recorded by relicts of three subcontinental-scale lateritic paleolandsurfaces whose age is bracketed by 39 Ar/ 40 Ar dating of lateritic K-Mn oxides. Denudation depths and rates compiled from 380 field stations show that despite heterogeneities confined to early-inherited reliefs, the subregion underwent low and homogeneous denudation (~2-20 m Ma -1 ) over most of its surface whatever the considered time interval. This homogeneity is further documented by a worldwide compilation of cratonic denudation rates, over long-term, intermediate and modern Cenozoic time scales (10 0 -10 7 yr). These results allow defining a steady state cratonic denudation regime that is weatheringlimited, i.e., controlled by the thickness of the (lateritic) regolith available for stripping. Steady state cratonic denudation regimes are enabled by maintained compartmentalization of the base levels between river knick points controlled by relief inheritance. Under such regimes, lowering of base levels and their fossilization are primarily imposed by long-term eustatic sea level fall and climate rather than by epeirogeny. The expression of steady state cratonic denudation regimes in clastic sedimentary fluxes remains to be investigated.
[1] Chemical weathering and mechanical erosion are first-order processes of long-term tropical morphogenesis, which is still poorly deciphered for lack of time constraints. We address this issue by laser probe 39 Ar age groups with d 18 O and eustatic curves allow definition of the different stages of morphogenesis. Paleocene-Eocene ages (59-45 Ma) bracket a greenhouse period propitious to bauxitic weathering. The lack of significant ages between $45 and 29 Ma characterizes a period dominated by mechanical erosion, during which detrital sediments, including lateritic materials, were accumulated in intracratonic basins allowing the exhumation of a new lateritic landsurface. Two major weathering periods separated by a second erosion episode (24-18 Ma) are also depicted at the end of Oligocene (29-24 Ma) and lower to mid-Miocene (18-11.5 Ma) in the upper domain, during which newly shaped land surfaces conspicuously weathered. The shorter-weathering and erosion episodes recorded in the lower domain from $18 to $2.9 Ma led to the final geomorphic changes that were conducive to the formation of glacis. The preservation of old cryptomelane (59-45 Ma) in the upper part of the ore deposit indicates a Cenozoic denudation limited to the erosion of previous bauxites, and partly, of ferricretes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.