In plants, posttranscriptional gene silencing (PTGS) is an ancient and effective defense mechanism against viral infection. A number of viruses encode proteins that suppress virus-activated PTGS. The p19 protein of tombusviruses is a potent PTGS suppressor which interferes with the onset of PTGS-generated systemic signaling and is not required for viral replication or for viral movement in Nicotiana benthamiana. This unique feature of p19 suppressor allowed us to analyze the mechanism of PTGS-based host defense and its viral suppression without interfering with other viral functions. In contrast to the necrotic symptoms caused by wild-type tombusvirus, the infection of p19-defective mutant virus results in the development of a typical PTGS-associated recovery phenotype in N. benthamiana. In this report we show the effect of PTGS on the viral infection process for N. benthamiana infected with either wild-type Cymbidium Ringspot Tombusvirus (CymRSV) or a p19-defective mutant (Cym19stop). In situ analyses of different virus-derived products revealed that PTGS is not able to reduce accumulation of virus in primary infected cells regardless of the presence of p19 PTGS suppressor. We also showed that both CymRSV and Cym19stop viruses move systemically in the vasculature, with similar efficiencies. However, in contrast to the uniform accumulation of CymRSV throughout systemically infected leaves, the presence of Cym19stop virus was confined to and around the vascular bundles. These results suggest that the role of p19 is to prevent the onset of mobile signal-induced systemic PTGS ahead of the viral infection front, leading to generalized infection.
An isolate of plum pox potyvirus from sweet cherry (PPV-SwC) in southern Italy was investigated. The isolate was mechanically or graft transmissible to different Prunus and Nicotiana spp. but not to Chenopodium spp. It was transmitted also by Aphis fabae and Myzus persicae in a nonpersistent manner. Restriction fragment length polymorphism analysis indicated and nucleotide sequencing confirmed that the isolate lacks AluI and RsaI sites in the C-terminal region of the coat protein (CP) gene. Western immunoblot results showed that the PPV-SwC CP has an electrophoretic mobility similar to that of strain PPV-D and faster than that of strain PPV-M. Double-antibody sandwich indirect enzyme-linked immunosorbent assay of the CP showed that PPV-SwC, although reacting with universal monoclonal antibodies to PPV, failed to react with antibodies specific to strains M and D. Results indicate that PPV-SwC is different from conventional strains of PPV but closely related to the sour cherry isolate of PPV from Moldova.
The glycoalkaloid content of transgenic potatoes was evaluated by an optimised method based on non-aqueous capillary electrophoresis coupled on-line with electrospray ionization-mass spectrometry (NACE-ESI-MS). The potato material consisted of tubers from a conventional cv. Désirée and from three lines of modified plants resistant, intermediate and susceptible to infection by potato virus Y (PVY). The main glycoalkaloids were confirmed to be alpha-solanine and alpha-chaconine with parent ion masses m/z 852 and 868, respectively. In addition, an unknown minor peak at m/z 850.6 was found both in conventional (control) and susceptible line potato tubers. Such a compound exhibited an MS(2) spectrum with fragments ions at 704 and 396 m/z derived by loss of two ions, i.e. m/z 146 and 307, most likely corresponding to a rhamnose unit and a [glucose-(rhamnose)(2)] moiety, respectively. Up to 30-80-fold higher concentrations of total glycoalkaloids were found in the peel compared to flesh samples of all tubers examined. TGA content was nearly doubled in peel samples of resistant compared to control lines, and these levels were lower than the limit recommended for food safety, i.e. 20-60 mg of TGA per 100 g fresh weight. Moreover, it was established that tubers produced by virus-resistant clones are substantially equivalent in glycoalkaloid contents to those produced by conventional potato varieties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.