This study investigates the immobilization of Cd2+ and Cr3+ by using geopolymer paste based on PT. IPMOMI fly ash. The best composition of geopolimers paste was determined based on the highest magnitude of its 7 days compressive strength. Geopolymer pastes were prepared by varying SiO2/Al2O3 and Na2O/SiO2 molar ratio of the starting materials. X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM) were employed to examined these compositions. The molar ratio of SiO2/Al2O3 6.46 was found to produce the highest compressive strength of the resulting geopolymer paste, i.e 25 MPa and increased to 33.17 MPa by adjusting the ratio of Na2O/SiO2 to 0.65. Cd2+ and Cr3+ cations were added into geopolymers resin at the level of 1000 – 16000 ppm (mg/kg fly ash) and it was found to improve their compressive strength. The addition of 4000 ppm of Cd2+ increased the compressive strength to 38.6 MPa while the inclusion of 6800 ppm of Cr3+ reached 47.83 MPa. Further addition of cations reduced these values and the lowest compressive strength was observed on the addition of 16000 ppm of Cd2+ and Cr3+, i.e 8.65 MPa and 4.39 MPa, respectively. Leaching test was conducted by using Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) and the distribution of heavy metal cations were examined by using SEM-EDX. The results showed that geopolymer pastes were able to immobilize Cr3+ at the studied level as there was no trace of Cr3+ detected after 6.5 hours of leaching. Geopolymer pastes were also found to completely immobilize Cd2+ at the level of 1000 ppm albeit the addition of 16000 ppm results in 6.26% leached out of this cation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.