This research aims to apply the localizing region-based active contour (LRAC) method to acquire the femur length in an ultrasound image automatically and to determine the effect of noise removal on the segmentation accuracy. The automatic femur length measurement system includes three main steps. The first step is the denoising process to reduce speckle noise in the ultrasound image. Afterwards, the LRAC method is applied to detect and segment a local region. The segmentation process with a certain number of iterations and a weight of the smoothing terms is started at the selected initial pixel. At the final step, the femur length is measured to estimate the gestational age. The experiment results show that the accuracy of the estimated gestational age increases significantly when the noise reduction technique is employed.
Indonesia merupakan negara dengan keanekaragaman hayati terbesar kedua di dunia setelah Brazil. Indonesia memiliki sekitar 25.000 spesies tumbuhan dan 400.000 jenis hewan dan ikan. Diperkirakan 8.500 spesies ikan hidup di perairan Indonesia atau merupakan 45% dari jumlah spesies yang ada di dunia, dengan sekitar 7.000an adalah spesies ikan laut. Untuk menentukan berapa jumlah spesies tersebut dibutuhkan suatu keahlian di bidang taksonomi. Dalam pelaksanaannya mengidentifikasi suatu jenis ikan bukanlah hal yang mudah karena memerlukan suatu metode dan peralatan tertentu, juga pustaka mengenai taksonomi. Pemrosesan video atau citra pada data ekosistem perairan yang dilakukan secara otomatis mulai dikembangkan. Dalam pengembangannya, proses deteksi dan identifikasi spesies ikan menjadi suatu tantangan dibandingkan dengan deteksi dan identifikasi pada objek yang lain. Metode deep learning yang berhasil dalam melakukan klasifikasi objek pada citra mampu untuk menganalisa data secara langsung tanpa adanya ekstraksi fitur pada data secara khusus. Sistem tersebut memiliki parameter atau bobot yang berfungsi sebagai ektraksi fitur maupun sebagai pengklasifikasi. Data yang diproses menghasilkan output yang diharapkan semirip mungkin dengan data output yang sesungguhnya. CNN merupakan arsitektur deep learning yang mampu mereduksi dimensi pada data tanpa menghilangkan ciri atau fitur pada data tersebut. Pada penelitian ini akan dikembangkan model hybrid CNN (Convolutional Neural Networks) untuk mengekstraksi fitur dan beberapa algoritma klasifikasi untuk mengidentifikasi spesies ikan. Algoritma klasifikasi yang digunakan pada penelitian ini adalah : Logistic Regression (LR), Support Vector Machine (SVM), Decision Tree, K-Nearest Neighbor (KNN), Random Forest, Backpropagation.
This paper summarizes a research effort in human face detection. A system to locate human faces in images, especially when used as a front-end for a human face identification system, could have many applications in the law enforcement and security professions. The approach presented here is a hybrid system using an edge deletion preprocessor and back-propagation neural networks. The method proposed successfully detected multiple faces. The results obtained are reported along with a discussion for improving the system.Keywords: Backpropagation neural networks, Edge Detection
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.