This paper deals with the synthesis, characterization, and photophysical behaviors of three Ru(II)–terpyridine complexes derived from a terpyridyl-imidazole ligand (tpy-HImzPh 3 Me 2 ), wherein a terpyridine moiety has been coupled with a dimethylbenzil unit through a phenylimidazole spacer. The three complexes display strong emission at RT having excited-state lifetimes in the range of 2.3–43.7 ns, depending upon the co-ligand present and the solvents used. Temperature-dependent emission spectral measurements have demonstrated that the energy separation between emitting metal-to-ligand charge transfer state and non-emitting metal-centered state is increased relative to that of [Ru(tpy)2]2+. In contrast to our previously studied Ru(II) complexes containing similar terpyridyl-imidazole motif but differing by peripheral methyl groups, significant enhancement of RT emission intensity and quantum yield and remarkable increase of emission lifetime occur for the present complexes upon protonation of the imidazole nitrogen(s) with perchloric acid. Additionally, by exploiting imidazole NH motif(s), we have examined their anion recognition behaviors in organic and aqueous media. Interestingly, the complexes are capable of visually recognizing cyanide ions in aqueous medium up to the concentration limit of 10–8 M. Computational studies involving density functional theory (DFT) and time-dependent DFT methods have been carried out to obtain insights into their electronic structures and to help with the assignment of absorption and emission bands.
Anion-and pH-sensing behaviors of an imidazole-dicarboxylatebased Ru(II)−bipyridine complex possessing a number of dissociable protons in its secondary coordination sphere are employed here for the creation of multiple Boolean and fuzzy logic systems. The absorption, emission, and electrochemical behaviors of the metalloreceptor were significantly modulated upon the influence of basic anions (such as F − , AcO − , and H 2 PO 4 − ) as well as by altering the pH of the solution. Interestingly, the deprotonation of the metalloreceptor by selected anions or by alkaline pH, followed by its restoration to its original form by acid or acidic pH is reversible and could be repeated many times. The metalloreceptor is capable to demonstrate several advanced Boolean functions, namely, three-input OR gate, set−reset flip-flop logic, and traffic signal, by employing its electrochemical responses through proper use of different inputs. Administering exhaustive sensing experiments by changing the analyte concentration within a wide range is usually tedious as well as exorbitantly costly. To get rid of these difficulties, we employed here several soft computing approaches such as artificial neural networks (ANN), fuzzy logic systems (FLS), or adaptive neuro−fuzzy inference system (ANFIS) to foresee the experimental sensing data and to appropriately model the protonation−deprotonation behaviors of the metalloreceptor. Reasonably good correlation between the experimental and model output data is also reflected in their tested root-mean-square error values (0.115961 and 0.118894 for the ANFIS model).
We report herein the synthesis, photophysics, and electrochemistry of three Ru(II)–terpyridine complexes derived from a new terpyridyl–imidazole ligand (tpy-HImzPh 3 F 2 ) and study their pH- and temperature-responsive behaviors toward the fabrication of molecular switches. The complexes emitted at room temperature (RT) have a lifetime within the 4.5–49.0 ns domain, depending on the auxiliary ligand and the solvent used. In the acidic region, the complexes exhibit emission, indicating the “on-state”, while in the basic condition, the emission is totally quenched, indicating the “off-state”. Similarly, when the temperature is lowered, the emission intensity and lifetime are enhanced, demonstrating the on-state, while increase of temperature leads to quenching of the emission intensity and lifetime, designated as the off-state. In both cases, the process is reversible. The bathochromic shift of the spectral band together with the emission quenching and lowering of the Ru3+/Ru2+ potential is also observed upon deprotonation at elevated pH. In addition, systematic variation of the absorption spectral behaviors upon variation of pH helps in evaluation of the pK a’s of the complexes. In essence, the complexes can act as switches emanated from a huge change in their absorption, emission, and redox behaviors as a function of their acidity/basicity (pH) and temperature. Moreover, their emission spectral responses as a function of pH and temperature were utilized for the fabrication of two-input binary logic gates. Density-functional theory (DFT) and time-dependent density-functional theory (TD-DFT) computations are performed for appropriate interpretation of the spectral bands.
A molecular system comprising a terpyridine moiety capable of coordinating with different cations and a photoswitchable stilbene unit has been utilized here for the fabrication of multiply configurable logic systems. Incorporation of a substituted stilbene unit into the terpyridine motif generates an intraligand charge-transfer-sensitive module whose absorption and emission spectral properties are highly sensitive to light as well as cations. On the basis of the optical response profile of the receptor in the presence of selected cations as well as light of a specific wavelength, we are able to demonstrate multiple Boolean logic functions such as INHIBIT, IMPLICATION, OR, NOR, and NAND, as well as various combinations of them. Of particular interest, we utilized the present system for the construction of security keypad locks and memory devices by maintaining a proper sequence of the stimuli and monitoring either absorption or emission spectral response at a specific wavelength as the output signal. In addition to various Boolean logic functions, the present system has also the ability to mimic fuzzy logic operations for generating an infinite-valued logic scheme depending on its emission spectral responses upon varying the concentration of cationic (Fe2+ and/or Zn2+) and anionic (CN–) inputs.
Anion- and temperature-induced alteration of the photoredox behaviors of our recently reported trimetallic complexes was carried out to fabricate potential molecular switches. The triads [(phen)2Ru(d-HIm-t)M(t-HIm-d)Ru(phen)2]6+ (phen = 1,10-phenanthroline, d-HIm-t = heterotopic bipyridine–terpyridne type bridging ligand, and M = RuII and OsII) possess two acidic imidazole NH protons that upon interaction with anions give rise to considerable changes in their photophysical and electrochemical behaviors. Red-shifts of the absorption and emission maximum and a decrease in the M3+/M2+ potential occur when the triads are treated with basic anions. In fact, the triads can function as triple-channel sensors for F–, AcO–, CN–, OH–, and H2PO4 – in acetonitrile and as selective probes for CN– and SCN– in water. The equilibrium constants for the receptor–anion interaction are on the order of 106 M–1, while the limit of detection was on the order of 10–9 M. Temperature plays a key role in the luminescence properties of the triads by adjusting the energy barrier between the emitting triplet metal-to-ligand charge transfer and non-emitting triplet metal-centered levels. A decrease in temperature leads to increases in the emission intensity and lifetime of the triads displaying the “on state”, whereas an increase in temperature leads to a decrease in their emission characteristics and thus indicates the “off state” and that the process is fully reversible. In essence, the triads could function as potential switches on the basis of the reversible change in their spectral and redox behaviors under the influence of anion, acid, and temperature. The most important outcome of this study is mimicking several advanced Boolean and fuzzy logic functions by utilizing the spectral response of the triads upon the action of said external stimuli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.