The angiotensin-converting enzyme 2/angiotensin (Ang)-(1-7)/Mas axis of the renin-angiotensin system often opposes the detrimental effects of the angiotensin-converting enzyme/Ang II/Ang II type 1 receptor axis and has been associated with beneficial effects on glucose homeostasis, whereas underlying mechanisms are mostly unknown. Here we investigate the effects of Ang-(1-7) and its receptor Mas on β-cell function. Isolated islets from Mas-deficient and wild-type mice were stimulated with Ang-(1-7) or its antagonists and effects on insulin secretion determined. Islets' cytoplasmic calcium and cAMP concentrations, mRNA amounts of Ins1, Ins2, Pdx1, and Mafa and effects of inhibitors of cAMP downstream signaling were determined. Ang-(1-7) was also applied to mice by osmotic pumps for 14 days and effects on glucose tolerance and insulin secretion were assessed. Ang-(1-7) increased insulin secretion from wild-type islets, whereas antagonists and genetic Mas deficiency led to reduced insulin secretion. The Mas-dependent effects of Ang-(1-7) on insulin secretion did not result from changes in insulin gene expression or changes in the excitation-secretion coupling but from increased intracellular cAMP involving exchange protein activated directly by cAMP. Administration of Ang-(1-7) in vivo had only marginal effects on glucose tolerance in wild-type mice but still resulted in improved insulin secretion from islets isolated of these mice. Interestingly, although less pronounced than in wild types, Ang-(1-7) still affected insulin secretion in Mas-deficient islets. The data indicate a significant function of Ang-(1-7) in the regulation of insulin secretion from mouse islets in vitro and in vivo, mainly, but not exclusively, by Mas-dependent signaling, modulating the accessory pathway of insulin secretion via increase in cAMP.
Extracellular recording of the glucose-induced electrical activity of mouse islets of Langerhans on microelectrode arrays (MEAs) is an innovative and powerful tool to address beta-cell (patho-)physiology. In a dual approach we tested whether this technique can detect concentration-dependent drug effects as well as characterize alterations in beta-cell activity during prolonged culture. First we established conditions that allow long-term investigation of beta-cell function by recording electrical activity. The results provide the first measurements of beta-cell membrane potential oscillations of individual murine islets during long-term culture. Oscillations were recorded for up to 34 days after islet isolation. Importantly, the glucose dependence of electrical activity did not change over a period of one month. Thus we can follow electrophysiological changes of individual islets induced by alterations in the beta-cell environment over weeks. Second, we used the MEA technique to assay beta-cell damage induced by oxidative stress and to evaluate appropriate protection mechanisms. Oxidative stress plays a key role in the development of type 2 diabetes mellitus (T2DM). Examination of the acute effects of H2O2 on electrical activity showed that the oxidant reduced the electrical activity in a concentration-dependent manner. The superoxide dismutase mimetic, tempol, protected against the detrimental effects of H2O2. In conclusion, we demonstrated that MEA recordings can be used to address disease-related mechanisms and protective interventions in beta-cells. In the future, this fundamental work should enable the monitoring of the electrical activity of islets of Langerhans under controlled ex vivo conditions including long-term exposure to oxidative stress, glucolipotoxicity, and other diabetes-inducing agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.