Motivation The analysis of bacterial isolates to detect plasmids is important due to their role in the propagation of antimicrobial resistance. In short-read sequence assemblies, both plasmids and bacterial chromosomes are typically split into several contigs of various lengths, making identification of plasmids a challenging problem. In plasmid contig binning, the goal is to distinguish short-read assembly contigs based on their origin into plasmid and chromosomal contigs and subsequently sort plasmid contigs into bins, each bin corresponding to a single plasmid. Previous works on this problem consist of de novo approaches and reference-based approaches. De novo methods rely on contig features such as length, circularity, read coverage, or GC content. Reference-based approaches compare contigs to databases of known plasmids or plasmid markers from finished bacterial genomes. Results Recent developments suggest that leveraging information contained in the assembly graph improves the accuracy of plasmid binning. We present PlasBin-flow, a hybrid method that defines contig bins as subgraphs of the assembly graph. PlasBin-flow identifies such plasmid subgraphs through a mixed integer linear programming model that relies on the concept of network flow to account for sequencing coverage, while also accounting for the presence of plasmid genes and the GC content that often distinguishes plasmids from chromosomes. We demonstrate the performance of PlasBin-flow on a real dataset of bacterial samples. Availability and implementation https://github.com/cchauve/PlasBin-flow.
Background. In the field of genome rearrangement algorithms, models accounting for gene duplication lead often to hard problems. For example, while computing the pairwise distance is tractable in most duplication-free models, the problem is NP-complete for most extensions of these models accounting for duplicated genes. Moreover, problems involving more than two genomes, such as the genome median and the Small Parsimony problem, are intractable for most duplication-free models, with some exceptions, for example the Single-Cut-or-Join (SCJ) model. Results. We introduce a variant of the SCJ distance that accounts for duplicated genes, in the context of directed evolution from an ancestral genome to a descendant genome where orthology relations between ancestral genes and their descendant are known. Our model includes two duplication mechanisms: single-gene tandem duplication and the creation of single-gene circular chromosomes. We prove that in this model, computing the directed distance and a parsimonious evolutionary scenario in terms of SCJ and single-gene duplication events can be done in linear time. We also show that the directed median problem is tractable for this distance, while the rooted median problem, where we assume that one of the given genomes is ancestral to the median, is NP-complete. We also describe an Integer Linear Program for solving this problem. We evaluate the directed distance and rooted median algorithms on simulated data. Conclusion. Our results provide a simple genome rearrangement model, extending the SCJ model to account for single-gene duplications, for which we prove a mix of tractability and hardness results. For the NP-complete rooted median problem, we design a simple Integer Linear Program. Our publicly available implementation of these algorithms for the directed distance and median problems allow to solve efficiently these problems on large instances.
a b s t r a c tIn VCP 4 problem, it is asked to find a set S ⊆ V of minimum size such that G[V \ S] contains no path on 4 vertices, in a given graph G = (V , E). We prove that it is APX-complete for 3-regular graphs as well as 3-regular bipartite graphs. We show that a greedy based algorithm approximates VCP 4 within a factor of 2 for regular graphs. We also show that VCP 4 is APX-complete for K 1,4 -free graphs and a local ratio based algorithm generates a solution which is within a factor of 3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.