Metal-based powder-bed-fusion additive manufacturing (PBF-AM) is gaining increasing attention in modern industries, and is a promising direct manufacturing technology. Additive manufacturing (AM) does not require the tooling cost of conventional subtractive manufacturing processes, and is flexible to produce parts with complex geometries. Quality and repeatability of AM parts remain a challenging issue that persistently hampers wide applications of AM technology. Rapid advancements in sensing technology, especially imaging sensing systems, provide an opportunity to overcome such challenges. However, little has been done to fully utilize the image profiles acquired in the AM process and study the fractal patterns for the purpose of process monitoring, quality assessment, and control. This paper presents a new multifractal methodology for the characterization and detection of defects in PBF-AM parts. Both simulation and real-world case studies show that the proposed approach effectively detects and characterizes various defect patterns in AM images and has strong potential for quality control of AM processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.