Diagnosis of different breast cancer stages using histopathology whole slide images is the gold standard in grading the tissue metastasis. Traditional diagnosis involves labor intensive procedures and is prone to human errors. Computer aided diagnosis assists medical experts as a second opinion tool in early detection which prevents further proliferation. Computing facilities have emerged to an extent where algorithms can attain near human accuracy in prediction of diseases, offering better treatment to curb further proliferation. The work introduced in the paper provides an interface in mobile platform, which enables the user to input histopathology image and obtain the prediction results with its class probability through embedded web-server. The trained deep convolutional neural networks model is deployed into a microcomputer-based embedded system after hyper-parameter tuning, offering congruent performance. The implementation results show that the embedded platform with custom-trained CNN model is suitable for medical image classification, as it takes less execution time and mean prediction time. It is also noticed that customized CNN classifier model outperforms pre-trained models when used in embedded platforms for prediction and classification of histopathology images. This work also emphasizes the relevance of portable and flexible embedded device in real time clinical applications.
Diagnosis of different breast cancer stages using histopathology whole slide images (WSI) is the gold standard in determining the grade of tissue metastasis. Computer-aided diagnosis (CAD) assists medical experts as a second opinion tool in early detection to prevent further proliferation. The field of pathology has advanced so rapidly that it is possible to obtain high-quality images from glass slides. Patches from the region of interest in histopathology images are extracted and trained using artificial neural network models. The trained model primarily analyzes and predicts the histology images for the benign or malignant class to which it belongs. Classification of medical images focuses on the training of models with layers of abstraction to distinguish between these two classes with less false-positive rates. The learning rate is the crucial hyperparameter used during the training of deep convolutional neural networks (DCNN) to improve model accuracy. This work emphasizes the relevance of the dynamic learning rate than the fixed learning rate during the training of networks. The dynamic learning rate varies with preset conditions between the lower and upper boundaries and repeats at different iterations. The performance of the model thus improves and attains comparatively high accuracy with fewer iterations.
Information in the form of digital images circulated over the networks is gaining popularity and great concern due to its enormous applications and necessities. in many of the applications, the images contain confidential information. the best method to protect images from unauthorized access is image encryption. Recent researches of image encryption algorithms have been increasingly based on chaotic systems. With the research of DNA computing has began, DNA cryptography is born as a new cryptographic field, in which DNA is used as information carrier and the modern biological technology is used as an implementation tool. Dna cryptography can be applied along with chaotic encryption for better performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.