Energy in a wireless sensor network (WSN) is rendered as the major constraint that affects the overall feasibility and performance of a network. With the dynamic and demanding requirements of diverse applications, the need for an energy efficient network persists. Therefore, this paper proposes a mechanism for optimizing the energy consumption in WSN through the integration of artificial neural networks (ANN) and Kohonen self-organizing map (KSOM) techniques. The clusters are formed and re-located after iteration for effective distribution of energy and reduction of energy depletion at individual nodes. Furthermore, back propagation algorithm is used as a supervised learning method for optimizing the approach and reducing the loss function. The simulation results show the effectiveness of the proposed energy efficient network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.