One of the most challenging problems in modern particle accelerator systems is the manufacture of RF cavities within the desired tolerance limits. In this study experimental and computational investigations to quantify the effects of transversal half-cell misalignments on the fundamental accelerator cavity parameters and beam dynamics are presented. Equivalent circuit components of an equatorially misaligned single-cell aluminum elliptical cavity are obtained from the measured data and are employed to calculate longitudinal impedance and modal wake function. Critical coupling and bead-pull measurements are performed at the TM010-like mode frequency, 2.45 GHz for the quality factor and shunt impedance of the high-β cavity. We report equivalent circuit analysis for higher-order modes and variations of the equivalent circuit components with respect to considered misalignment errors for the MICE experiment's muon cooling cavity. It is shown that using the equivalent circuit model decreases the computational load significantly for the wake field simulations of resonator cavities. Good agreement between simulations and measurements in terms of accelerating cavity parameters and impedances is illustrated.
Effects of surface roughness and transversal cell misalignments on the performance of elliptical accelerator cavities are studied in this article. A high-β, 9-cell elliptical cavity, whose π-mode resonates at 3.9 GHz, is designed to investigate imperfections. The considered frequency is chosen to observe variations of fundamental accelerating cavity parameters, wake potentials, and wake impedances more clearly by using relatively small structures. Moreover, 3-cell elliptical cavities having π-mode at 2 and 3.9 GHz are designed to confirm the 9-cell cavity results. The undesired effects caused by the considered mechanical imperfections are simulated for an ultra-relativistic bunch in the parameter scope of a realistic scenario. In particular, Huray's snowball model, which is a scattering-based surface roughness approach developed for microstrip lines, is employed to determine the effects of the surface roughness on the accelerator cavities. Surface roughness due to the fabrication process is expressed as a surface impedance, and the required equivalence between the surface roughness and surface impedance concept is achieved. Significant computational efficiency is observed by using the surface impedance concept with Huray's snowball model in the simulations. Experimental verification of certain parameters is included for an elliptical cavity having high cell-to-cell coupling at 3.9 GHz.
This study demonstrates the applicability of additively manufactured components that are metalized with conductive tape for two different microwave experiments. We focus on dielectric measurements and prototyping elliptical accelerator cavities at a low power regime for 2.45 GHz. To illustrate the accuracy of our results for the commonly used solid/liquid materials in engineering and to compare the fundamental accelerator cavity parameters with previous research rectangular and elliptic 3D-printed cavities coated with aluminum-type tape were employed in the experiments. Results reported for the complex-valued permittivities and specific design parameters for the cavity prototype are consistent with the literature. Various approaches to obtain the conductivity value of the tape and the effect of the roughness/thickness of the coating on the reflection parameter are discussed in detail. We confirm the effectiveness of the proposed approach, which reduces costs and provides a high degree of accuracy for investigated applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.