We revisit the performance of template-based APR to build comprehensive knowledge about the effectiveness of fix patterns, and to highlight the importance of complementary steps such as fault localization or donor code retrieval. To that end, we first investigate the literature to collect, summarize and label recurrently-used fix patterns. Based on the investigation, we build TBar, a straightforward APR tool that systematically attempts to apply these fix patterns to program bugs. We thoroughly evaluate TBar on the De-fects4J benchmark. In particular, we assess the actual qualitative and quantitative diversity of fix patterns, as well as their effectiveness in yielding plausible or correct patches. Eventually, we find that, assuming a perfect fault localization, TBar correctly/plausibly fixes 74/101 bugs. Replicating a standard and practical pipeline of APR assessment, we demonstrate that TBar correctly fixes 43 bugs from Defects4J, an unprecedented performance in the literature (including all approaches, i.e., template-based, stochastic mutation-based or synthesis-based APR). CCS CONCEPTS• Software and its engineering → Software verification and validation; Software defect analysis; Software testing and debugging. KEYWORDSAutomated program repair, fix pattern, empirical assessment.
Properly benchmarking Automated Program Repair (APR) systems should contribute to the development and adoption of the research outputs by practitioners. To that end, the research community must ensure that it reaches significant milestones by reliably comparing state-of-the-art tools for a better understanding of their strengths and weaknesses. In this work, we identify and investigate a practical bias caused by the fault localization (FL) step in a repair pipeline. We propose to highlight the different fault localization configurations used in the literature, and their impact on APR systems when applied to the Defects4J benchmark. Then, we explore the performance variations that can be achieved by "tweaking" the FL step. Eventually, we expect to create a new momentum for (1) full disclosure of APR experimental procedures with respect to FL, (2) realistic expectations of repairing bugs in Defects4J, as well as (3) reliable performance comparison among the state-of-theart APR systems, and against the baseline performance results of our thoroughly assessed kPAR repair tool. Our main findings include: (a) only a subset of Defects4J bugs can be currently localized by commonly-used FL techniques; (b) current practice of comparing state-of-the-art APR systems (i.e., counting the number of fixed bugs) is potentially misleading due to the bias of FL configurations; and (c) APR authors do not properly qualify their performance achievement with respect to the different tuning parameters implemented in APR systems.
Patching is a common activity in software development. It is generally performed on a source code base to address bugs or add new functionalities. In this context, given the recurrence of bugs across projects, the associated similar patches can be leveraged to extract generic fix actions. While the literature includes various approaches leveraging similarity among patches to guide program repair, these approaches often do not yield fix patterns that are tractable and reusable as actionable input to APR systems.In this paper, we propose a systematic and automated approach to mining relevant and actionable fix patterns based on an iterative clustering strategy applied to atomic changes within patches. The goal of FixMiner is thus to infer separate and reusable fix patterns that can be leveraged in other patch generation systems. Our technique, FixMiner, leverages Rich Edit Script which is a specialized tree structure of the edit scripts that captures the ASTlevel context of the code changes. FixMiner uses different tree representations of Rich Edit Scripts for each round of clustering to identify similar changes. These are abstract syntax trees, edit actions trees, and code context trees.We have evaluated FixMiner on thousands of software patches collected from open source projects. Preliminary results show that we are able to mine accurate patterns, efficiently exploiting change information in Rich Edit Scripts. We further integrated the mined patterns to an automated program repair prototype, PAR FixMiner , with which we are able to correctly fix 26 bugs of the
Fix pattern-based patch generation is a promising direction in Automated Program Repair (APR). Notably, it has been demonstrated to produce more acceptable and correct patches than the patches obtained with mutation operators through genetic programming. The performance of pattern-based APR systems, however, depends on the fix ingredients mined from fix changes in development histories. Unfortunately, collecting a reliable set of bug fixes in repositories can be challenging. In this paper, we propose to investigate the possibility in an APR scenario of leveraging code changes that address violations by static bug detection tools. To that end, we build the AVATAR APR system, which exploits fix patterns of static analysis violations as ingredients for patch generation. Evaluated on the Defects4J benchmark, we show that, assuming a perfect localization of faults, AVATAR can generate correct patches to fix 34/39 bugs. We further find that AVATAR yields performance metrics that are comparable to that of the closely-related approaches in the literature. While AVATAR outperforms many of the state-of-theart pattern-based APR systems, it is mostly complementary to current approaches. Overall, our study highlights the relevance of static bug finding tools as indirect contributors of fix ingredients for addressing code defects identified with functional test cases.Index Terms-Automated program repair, static analysis, fix pattern.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.