Agricultural land degradation due to nutrient deficiencies is a threat to agricultural sustainability. As nutrients availability is influenced by soil heterogeneity, climatic conditions and anthropogenic activities; hence, delineation of nutrient management zones (MZs) based on spatial variability could be an effective management option at regional scale. Thus, the present study was carried out to delineate MZs in the Shiwalik Himalayan region of India by capturing spatial variability of soil properties and secondary and micronutrients status because of the emerging nutrient deficiencies. For the study, a total of 2575 geo‐referenced representative surface (0–15 cm depth) soil samples were collected from the study region covering an area of 53,483 km2. The soils were analysed for pH, electrical conductivity, soil organic carbon, available sulphur (S) and micronutrients (Zn, Fe, Cu, Mn, B and Mo) concentrations. There was a wide variation in soil properties with coefficient of variation values of 14 (for pH) to 86% for available Mo. Geostatistical analysis revealed spherical, Gaussian, exponential, stable, circular and K‐Bessel best‐fit models for soil properties. Most of the soil properties were having moderate spatial dependence except soil pH and S (strong spatial dependence) and Zn (weak spatial dependence). About 49%, 10%, 2%, 13%, 11%, 12% and 8% area of the study region were found to be deficient (including acute and marginal deficiency) in S, Zn, Fe, Cu, Mn, B and Mo, respectively. The principal component analysis and fuzzy c‐mean clustering were performed to develop the MZs. Four principal components with eigenvalues greater than 1 and accounting 65·4% of total variance were retained for further analysis. On the basis of fuzzy performance index and normalized classification entropy, four potential MZs were identified. Analysis of variance confirmed the heterogeneity in most of the studied soil properties among the MZs. The study indicated that the methodology of delineating MZs can be effectively used in site‐specific S and micronutrients management in the Shiwalik Himalayan region of India. Copyright © 2016 John Wiley & Sons, Ltd.
A B S T R A C TEthnopharmacological relevance: The genus Psoralea (Fabaceae) harbours 105 accepted species that are extensively used by local peoples and medicinal practitioners of China, India, and other countries for treatment of tooth decay, psoriasis, leucoderma, leprosy, kidney problems, tuberculosis, indigestion, constipation and impotence. Presently, pharmacological research reports are available on only few species namely Bituminaria bituminosa (Syn: P. bituminosa), P. canescens, P. corylifolia, P. esculenta, P. plicata and P. glandulosa which are valued for their chemical constituents and traditional uses. Aim of the review: This review article provides explicit information on traditional uses, phytochemistry, and pharmacological activities of selected Psoralea species. The possible trends and perspectives for future research on these plants are also discussed. Materials and methods: An extensive and systematic review of the extant literature was carried out, and the data under various sections were identified using a computerized bibliographic search via the PubMed, Web of Science and Google Scholar, CAB Abstracts, MEDLINE, EMBASE, INMEDPLAN, NATTS as well as several websites. Key findings: A total of 291 bioactive compounds from 06 species of genus Psoralea have been isolated and characterized. However, P. bituminosa alone possess nearly 150 compounds. These bioactive compounds belong to different chemical classes, including flavonoids, coumarins, furanocoumarins, chalcones, quinines, terpenoids and some others due to which these species exhibit significant anti-oxidant, anti-bacterial, anti-fungal, anti-viral, anti-helmintic, anti-diabetic, diuretic, hepatoprotective, anti-cancer and anti-tumor activities. P. corylifolia L. (Babchi), a Chinese traditional medicinal plant has been used in traditional medicine for many decades for its healing properties against numerous skin diseases such as leprosy, psoriasis and leucoderma. Conclusions: The in vitro studies and in vivo models have provided a simple bio-scientific justification for various ethnopharmacological uses of Psoralea species. From the toxicological perspective, the root, leaf, and seed extracts and their preparations have been proven to be safe when consumed in the recommended doses. But, meticulous studies on the pharmaceutical standardization, mode of action of the active constituents, and sustainable conservation of Psoralea species are needed, to meet the growing demands of the pharmaceutical industries, and to fully exploit their preventive and therapeutic potentials.
Diseased cotton plants showing typical leaf curl symptoms were collected from experimental plot of Agriculture Research Station-Sriganganagar, Rajasthan. Complete DNA-A component from samples taken from two areas were amplified through rolling circle amplification (RCA) using templiphi kit (GE Healthcare) and characterized. DNA-A of one isolate consists of 2751 nucleotides and second isolate of 2759 nucleotide. Both sequences comprised six ORF's. Genome organization of DNA-A of one isolate shows high sequence similarity with other characterized local begomovirus isolates of Rajasthan, while other isolate shows high sequence similarity with CLCuV reported from Pakistan. The maximum similarity of first isolate, CLCuV-SG01, shows highest sequence identity with Cotton leaf curl Abohar (Rajasthan) virus, and second isolate, CLCuV-SG02, shows highest sequence identity with cotton leaf curl virus from Pakistan. Both isolates showed 85% similarities with each other. The sequence data revealed probable infiltration of some strains of Cotton leaf curl virus from Pakistan to India, or co-existence of different isolates under similar geographical conditions. While CLCuV-SG01 shows highest nt sequence similarity with CLCuV Rajasthan (Abohar), nt identity of V1 ORF (encoding coat protein) of SG01 shows the highest nt identity (100%) with CLCuV Multan (Bhatinda) and Abohar virus while AC1 region also showed difference. Complete nucleotide sequence of SG01 shows only 86% similarity with CLCuV Multan virus. Similarity search revealed significant difference in AV1 and AC1 regions with respect to DNA-A suggesting an evolutionary history of recombination. Computer based analysis, recombination detection Program (RDP) supports the recombination hypothesis, indicated that recombination with other begomoviruses had taken place within V1 ORF and AC1 ORF of CLCuV-SG01 and AC1 ORF of CLCuV-SG02 and also in noncoding intergenic region (IR).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.