The present study was conducted to investigate the physicochemical properties and pyrolysis kinetics of sugarcane bagasse (SB). The physiochemical properties of SB were determined to examine its potential for pyrolysis. The physiochemical properties such as proximate analysis, ultimate analysis, heating values, lignocellulosic composition, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) of SB were investigated. The pyrolysis experiments were conducted in a nonisothermal thermogravimetric analyzer (TGA) to understand the thermal degradation behavior of SB. The activation energy (Ea) of SB pyrolysis was calculated by model-free Kissinger–Akahira–Sunose (KAS) and Ozawa–Flynn–Wall (OFW) methods. Average values of activation energy determined through KAS and OFW methods are found as 91.64 kJ/mol and 104.43 kJ/mol, respectively. Variation in the activation energy with degree of conversion was observed, which shows that pyrolysis is a complex process composed of several reactions. Coats–Redfern method was used to calculate the pre-exponential factor and reaction order. Conversion of SB due to heat treatment computed by using the kinetic parameters is found to be in good agreement with the experimental conversion data, and the maximum error limit between the experimental and predicted conversions is 8.5% for 5 °C/min, 6.0% for 10 °C/min, and 11.6% for 20 °C/min. The current investigation proves the suitability of SB as a potential feedstock for pyrolysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.