Biodegradable nanoparticles (NPs) are gaining increased attention for their ability to serve as a viable carrier for site specific delivery of vaccines, genes, drugs and other biomolecules in the body. They offer enhanced biocompatibility, superior drug/vaccine encapsulation, and convenient release profiles for a number of drugs, vaccines and biomolecules to be used in a variety of applications in the field of medicine. In this manuscript, the methods of preparation of biodegradable NPs, different factors affecting optimal drug encapsulation, factors affecting drug release rates, various surface modifications of nanoparticles to enhance in-vivo circulation, distribution and multimodal functionalities along with the specific applications such as tumor targeting, oral delivery, and delivery of these particles to the central nervous system have been reviewed.
The effects of substrates and solvent on polymer formation, number-average molecular weight (M(n)), polydispersity, and end-group structure for lipase-catalyzed polycondensations were investigated. Diphenyl ether was found to be the preferred solvent for the polyesterification of adipic acid and 1,8-octanediol giving a M(n) of 28 500 (48 h, 70 degrees C). The effect of varying the alkylene chain length of diols and diacids on the molecular weight distribution and the polymer end-group structure was assessed. A series of diacids (succinic, glutaric, adipic, and sebacic acid) and diols (1,4-butanediol, 1,6-hexanediol, and 1,8-octanediol) were polymerized in solution and in bulk. It was found that reactions involving monomers having longer alkylene chain lengths of diacids (sebacic and adipic acid) and diols (1,8-octanediol and 1,6-hexanediol) give a higher reactivity than reactions of shorter chain-length diacids (succinic and glutaric acid) and 1,4-butanediol. The bulk lipase-catalyzed condensation reactions were feasible, but the use of diphenyl ether gave higher M(n) values (42,400 g/mol in 3 days at 70 degrees C). The polydispersity varied little over the conditions studied giving values =2. No specific trend with respect to end-group structure as a function of time was observed. At 70 degrees C, the retention of catalyst activity in the bulk was independent of substrate structure but was higher when reactions were conducted in diphenyl ether than in bulk.
Bulk condensation polymerizations of adipic acid and octanediol, catalyzed by Candida antartica Lipase B (CALB), were investigated. The polymers formed by 8 and 24 h polymerizations using CALB immobilized on Accurel and Lewatit had similar molecular weights (e.g., M n at 24 h ≈15 000). CALB "free" of the immobilization resin was also active for the polymerization but, relative to its immobilized forms, gave slower chain growth (M n ≈ 10 000 by 48 h). For all three catalyst systems at degree of polymerization (DP) g 20, dispersity (Mw/Mn) was e1.5. Since random processes of step-growth condensation polymerizations give dispersity values g 2, the dispersity of products obtained using CALB as the catalyst is believed to result from the unique chain length or mass selectivity of the lipase. Gel permeation chromatograms showed that between 15 min and 4 h chain growth occurred rapidly so that the fraction of product with M p values > 2910 increased from 28 to 78%. At 70°C the catalyst activity at 4 h remained unchanged but decreased by 15 and 21% at 24 and 48 h. Unexpectedly, an increase in the concentration of CALB on Lewatit from 0.1 to 1 wt % protein resulted in only a small increase in M n (e.g., at 24 h, 14 500 vs 17 800). However, decrease in the percent protein to 0.5% had a large detrimental effect. Between 65 and 90°C the polymerizations occurred with little dependence on the reaction temperature.
Immobilized Candida antarctica Lipase B (Novozyme-435) was studied for bulk polyesterifications of linear aliphatic hydroxyacids of variable chain length. The products formed were not fractionated by precipitation. The relative reactivity of the hydroxyacids was l6-hydroxyhexadecanoic acid approximately 12-hydroxydodecanoic acid approximately 10-hydroxydecanoic acid (DPavg congruent with 120, Mw/Mn
Lipase catalyzed esterification of therapeutic drugs to functional self-assembled monolayers (SAMs) on 316L stainless steel (SS) after assembly has been demonstrated. SAMs of 16-mercaptohexadecanoic acid (-COOH SAM) and 11-mercapto-1-undecanol (-OH SAM) were formed on 316L SS, and lipase catalysis was used to attach therapeutic drugs, perphenazine and ibuprofen, respectively, on these SAMs. The reaction was carried out in toluene at 60 degrees C for 5 h using Novozyme-435 as the biocatalyst. The FTIR spectra after surface modification of -OH SAMs showed the presence of the C=O stretching bands at 1745 cm(-1), which was absent in the FTIR spectra of -OH SAMs. Similarly, the FTIR spectra after the reaction of the -COOH SAM with perphenazine showed two peaks in the carbonyl region, a peak at 1764 cm(-1), which is the representative peak for the C=O stretching for esters. The second peak at 1681 cm(-1) is assigned to the C=O stretching of the remaining unreacted terminal COOH. XPS spectra after lipase catalysis with ibuprofen showed a photoelectron peak evolving at 288.5 eV which arises from the carbon (C=O) of the carboxylic acid of the drug (ibuprofen). Similarly for -COOH SAMs, after esterifiation we see a small, photoelectron peak evolving at 286.5 eV which corresponds to the C in the methylene groups adjacent to the oxygen (C-O), which should evolve only after the esterification of perphenazine with the -COOH SAM. Thus, lipase catalysis provides an alternate synthetic methodology for surface modification of functional SAMs after assembly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.