Here, we show a novel solid–solid–vapor (SSV) growth mechanism whereby epitaxial growth of heterogeneous semiconductor nanowires takes place by evaporation-induced cation exchange. During heating of PbSe-CdSe nanodumbbells inside a transmission electron microscope (TEM), we observed that PbSe nanocrystals grew epitaxially at the expense of CdSe nanodomains driven by evaporation of Cd. Analysis of atomic-resolution TEM observations and detailed atomistic simulations reveals that the growth process is mediated by vacancies.
Composite noble metal-based nanorods for which the surface plasmon resonances can be tuned by composition and geometry are highly interesting for applications in biotechnology, imaging, sensing, optoelectronics, photovoltaics, and catalysis. Here, we present an approach for the oxidative etching and subsequent metal overgrowth of gold nanorods, all taking place while the nanorods are embedded in mesoporous SiO 2 shells (AuNRs@meso-SiO 2 ). Heating of the AuNRs@meso-SiO 2 in methanol with HCl resulted in reproducible oxidation of the AuNRs by dissolved O 2 , specifically at the rod ends, enabling precise control over the aspect ratio of the rods. The etchedAuNRs@meso-SiO 2 were used as a template for the overgrowth of a second metal (Ag, Pd, and Pt), yielding bimetallic, core−shell structured nanorods. By varying the reaction rates of the metal deposition both smooth core−shell structures or gold nanorods covered with a dendritic overlayer could be made. This control over the morphology, including metal composition, and thus the plasmonic properties of the composite rods were measured experimentally and also confirmed by Finite-Difference Time-Domain (FDTD) calculations. The presented synthesis method gives great control over tuning over both plasmonic properties and the particle stability/affinity for specific applications.
A set of interatomic pair potentials is developed for ZnO based on the partially charged rigid ion model (PCRIM). The derivation of the potentials combines lattice inversion, empirical fitting, and ab initio energy surface fitting. We show that, despite the low number of parameters in this model (8), a wide range of physical properties is accurately reproduced using the new potential model. The calculated lattice parameters and elastic constants of ZnO in the wurtzite (WZ) phase, as well as the lattice parameters and stabilities of ZnO in other high-pressure and metastable phases, agree well with experiments and with density functional theory (DFT) calculations. The calculated transition pressure of the wurtzite-to-rocksalt (WZ-to-RS) transition is 12.3 GPa. A wurtzite-to-honeycomb (WZ-to-HC) phase transition induced by uniaxial pressure along the c-axis is simulated by means of molecular dynamics (MD) simulations. The WZ-to-HC transition takes place at an uniaxial pressure of 8.8 GPa while the reverse transition takes place at 2.9 GPa, which is consistent with DFT calculations. Other physical properties, including phonon dispersion, phonon density of states, and melting point calculated using our ZnO potential model are in good agreement with experimental and DFT data. Limitations of the novel ZnO potential model are also discussed.
In this work, we investigate the thermal evolution of CdSe-CdS-ZnS core-multishell quantum dots (QDs) in situ using transmission electron microscopy (TEM). Starting at a temperature of approximately 250 °C, Zn diffusion into inner layers takes place together with simultaneous evaporation of particularly Cd and S. As a result of this transformation, CdxZn1-xSe-CdyZn1-yS core-shell QDs are obtained.
A transferable force field for the PbSe-CdSe solid system using the partially charged rigid ion model has been successfully developed and was used to study the cation exchange in PbSe-CdSe heteronanocrystals [A. O. Yalcin et al., “Atomic resolution monitoring of cation exchange in CdSe-PbSe heteronanocrystals during epitaxial solid-solid-vapor growth,” Nano Lett. 14, 3661–3667 (2014)]. In this work, we extend this force field by including another two important binary semiconductors, PbS and CdS, and provide detailed information on the validation of this force field. The parameterization combines Bader charge analysis, empirical fitting, and ab initio energy surface fitting. When compared with experimental data and density functional theory calculations, it is shown that a wide range of physical properties of bulk PbS, PbSe, CdS, CdSe, and their mixed phases can be accurately reproduced using this force field. The choice of functional forms and parameterization strategy is demonstrated to be rational and effective. This transferable force field can be used in various studies on II-VI and IV-VI semiconductor materials consisting of CdS, CdSe, PbS, and PbSe. Here, we demonstrate the applicability of the force field model by molecular dynamics simulations whereby transformations are initiated by cation exchange.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.